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Abstract

Problems of stacking items or goods occur in a plenty of applications, such as container
terminals, warehouses, and steel plants. A lot of research has been done in this area in
recent years. In this survey, we provide an overview of the Block Relocation Problem
(BRP) and the PreMarshalling Problem (PMP) and review optimization methods for these
two problems. Due to common properties between these problems, solutions and methods
applicable to one problem can often be applied to the other, and vice-versa. We distinguish
four categories of optimization methods and propose future directions for each of them.
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1. Introduction1

The storage of items in a limited area arises in many applications, such as container2

terminals, warehouses, and steel plants. For instance, container terminals handle the storage3

of containers when transferring them among different types of ships, trains, and trucks.4

With growing vessel sizes, shipping companies are more demanding than ever. In 2018,5

world seaborne trade volumes rose to 11 billion tons [107]. Warehouses temporarily store6

items such as parcels or steel plates before their retrieval. Estimated 87 billion parcels7

were shipped worldwide in 2018 according to Bowes [12]. In 2018, the world crude steel8

production reached 1.8 billion tons [114]. According to Świeboda and Zając [89], avoiding9

unproductive moves of containers can reduce fuel consumption by 40 %. Therefore, with10

the growing demand of the last decades, improving logistics performance in the industry has11

become particularly important and challenging. This paper provides a comprehensive review12

of the recent methods found in the literature for tackling two popular stacking problems,13

the Block Relocation Problem and the PreMarshalling Problem.14

For the sake of clarity, we specify the terms employed in this paper. A storage area can15

be a container ship, a warehouse, a yard, or a train depot. A storage area is assumed to be16

arranged as stacks (or columns). Stacks contain items piled up on top of each other. By17

default, we assume that a crane operates the items, so each stack is accessed from the top18

only. A stack may have a maximum height or capacity, i.e. the maximum number of slots19

in the stack. An arrangement of items in the storage area is called a layout (also called20

configuration in the literature). Items are cuboids such as containers, blocks, steel plates, or21

parcels. This paper does not consider round items such as rolls or coils. Items that arrive22

at a storage area are called incoming items, whereas the ones that leave the storage area23
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are outgoing items. Items may have a known arrival time and departure time (also called24

due time, retrieval time or priority). Let us define three categories of moves. When an item25

arrives at the storage area, we call it a placement. When an item leaves the storage area,26

we call it a retrieval. A relocation happens when we move an item from a stack to another.27

In the literature, a relocation might also be called reshuffling or rehandling. In problems28

where items must be retrieved in a specific order, we call the current item to retrieve the29

target item. When the target item is not located at the top of a stack, all the items above30

it must be relocated. Such relocations are called forced relocations because they cannot be31

avoided. Otherwise, voluntary moves (also called cleaning or anticipatory moves) consist in32

relocating arbitrary items.33

Table 1: Abbreviations for solution methods

Mathematical formulations
(M)IP (Mixed) Integer Programming
CP Constraint Programming
DP Dynamic Programming
SDP Stochastic Dynamic Programming

Metaheuristics
ACO Ant Colony Optimization
CM Corridor method
GA Genetic algorithm
GRASP Greedy randomized adaptive search procedure
PM Pilot Method
SA Simulated annealing

Tree Search based
A∗ A∗ search
BS Beam Search
B&B Branch & Bound
B&P Branch & Price
B&C Branch & Cut
DT Decision Trees
ID-A∗ Iterative Deepening A∗

ID-B&B Iterative Deepening B&B
RS Rake Search
TS Tree Search

In many applications, departure times of items are unknown when items are loaded into34

the storage area. In this case, operators cannot guarantee that items are arranged in their35

order of departure, so relocations may be necessary afterward. When the departure times are36

revealed, two approaches are typically considered. Premarshalling arises when items can be37
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rearranged before unloading. In this approach, items are relocated inside the storage area38

in such a way that items can be retrieved afterward without additional relocations. The39

PreMarshalling Problem (PMP) aims at finding a shortest sequence of moves achieving40

this goal. When items cannot be rearranged before retrievals, operators have to consider41

relocations and retrievals simultaneously. The Block Relocation Problem (BRP) consists in42

finding a shortest sequence of moves to retrieve items in the given departure order.43

As suggested in a comprehensive survey [69], stacking problems can be distinguished into44

three classes: loading, premarshalling, and unloading problems. Problems can also belong45

to a combination of these classes, e.g. loading/unloading problems. A closely related survey46

[25] (based on [24]), classifies stacking problems into storage problems, re-handling problems,47

and retrieval problems. Storage problems aim at choosing a best placement for incoming48

items. Re-handling problems aim at continuously handling both incoming and outgoing49

items. Finally, the pure BRP and PMP fall into the last class, i.e. retrieval problems,50

where incoming items are not allowed. In the literature, we observed that authors often51

applied similar methods to distinct classes of stacking problems. This is possible because52

these problems often share common structures and common decision types. We recall that53

the BRP consists in unloading items from the storage area in a given order with a shortest54

sequence of moves. During the retrieval process, the decision-maker may need to relocate55

items blocking a target item. This type of decision is also in the core of the PMP. For56

example, Caserta and Voß [21] adapt to the PMP a method developed in [22] for the BRP.57

It can also be observed that numerous heuristics can be applied each time an item needs to58

be placed or relocated, regardless of the type of problem. Our paper gives a method-centric59

view of the literature and aims at helping researchers and engineers in the development60

of advanced methods for solving a wide range of stacking problems. For this purpose, we61

provide a classification of optimization methods in four distinct categories:62

• Mathematical formulations, described in Section 3, including Integer Programming63

and Constraint Programming models, as well as Dynamic Programming.64

• Heuristics, described in Section 4.65

• Metaheuristics, described in Section 5, including methods such as Genetic Algo-66

rithms and Simulated Annealing.67

• Tree search-based methods, described in Section 6, including methods based on68

the exploration of a tree, such as Branch & Bound, Beam Search and A∗.69

Table 1 summarizes the abbreviations used to name the optimization methods in this paper.70

Various papers present overviews of related problems and topics, e.g. container rehan-71

dling [20], container terminals [88, 73], container stowage metrics [46], container loading [11],72

crane scheduling [14, 13, 61], container ship stowage planning [126], ship loading problem73

[50], train shunting [43], storage yard operations [16], transport operations [17].74

The rest of this paper is structured as follows. In Section 2, we review stacking problems75

studied in the literature related to the Block Relocation Problem and the PreMarshalling76
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Problem. In Sections 3 to 6, we review methods developed during recent years. Finally,77

Section 7 provides concluding remarks and discusses related future directions.78

2. Problem definitions79

According to a previous comprehensive survey [69], stacking problems can be classified80

into three main categories. These categories correspond to three stacking processes. In81

loading problems, one has to store items arriving in the storage area. In premarshalling82

problems, one has to rearrange items already placed in the storage area to satisfy an objective83

such as being able to retrieve all the items without relocations. In unloading problems, one84

has to retrieve outgoing items from the storage area, e.g. by determining a sequence of85

moves that minimizes the number of relocations. Finally, these categories may be combined86

to describe problems covering multiple stacking processes. For example, in a combined87

loading/unloading problem, one has to store incoming items and retrieve outgoing items,88

simultaneously.89

Lehnfeld and Knust [69] propose a three-field notation to identify problems and their90

characteristics. Although this notation has several advantages, problems encountered in91

this paper can also be considered as variants of the Block Relocation Problem or the Pre-92

Marshalling Problem. For the sake of brevity, this survey does not cover other stacking93

problems, such as loading and combined loading/unloading problems. We refer to [69] for94

an overview of those.95

2.1. Block Relocation Problem96

The Block Relocation Problem (BRP) [59], also called Container Relocation97

Problem (CRP), is certainly the most studied problem presented in this paper. Items,98

already located in the storage area, have predefined priorities or departure times. The99

objective of the classic BRP is to retrieve all the items with respect to their departure100

times, with a minimum number of relocations.101

Figure 1 illustrates an example of a layout with 9 items placed in 3 stacks without height102

limit. Items are indexed by retrieval time and must be retrieved in the order 1, 2, . . . , 9. In103

the first turn, item 4 must be relocated to access the (shaded) target item 1. After items 1104

and 2 have been retrieved, items 8 and 6 need to be relocated to access item 3. Afterward,105

items 3, 4, 5, and 6 can be retrieved. Then, a relocation of item 9 is necessary to remove106

item 7. Finally, a total of four relocations are required to empty the layout.107
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8 9 8

Figure 1: Example of solution for the Block Relocation Problem
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Let us discuss several common variants of the BRP. Under the restricted BRP (rBRP),108

only items blocking the current target item can be relocated. On the other hand, the unre-109

stricted BRP (uBRP) allows relocating any item, including voluntary moves. Note that110

the unrestricted BRP can lead to fewer relocations, at the cost of a significantly larger search111

space. Another characteristic of the BRPs to consider is the retrieval order of items. Under112

the BRP with distinct priorities, the retrieval order is described as a sequence and cannot113

be changed. In contrast, under the BRP with duplicate priorities, items are partitioned114

into groups in which all items have the same priority. Thus, items belonging to the same115

group can be retrieved in an arbitrary order.116

Some authors optimize alternative objectives, such as the crane working time/distance117

[108, 85, 86], or waiting times [9, 71, 35]. The retrieval order of items may be partially118

unknown and revealed during the unloading process, as in the Stochastic BRP [42] where119

the objective is to minimize the expected number of relocations [83, 128, 35]. Departure times120

of items may lie within a time window [63]. The Slab Stack Shuffling (SSS) problem121

assumes that items belong to predefined families with given priorities. These families may be122

disjoint [99], or may overlap [100]. In the SSS, one item has to be retrieved per family with123

respect to the family priorities. In theBRP with Stowage Plan (BRP-SP) [51, 54], items124

must be put in a destination storage area with designated slots in which items cannot be125

relocated. In the Block Retrieval Problem (BRTP) [83], only a subset of the items must126

be retrieved, in any order. The BRP usually assumes that only retrievals and relocations127

occur. The dynamic version of the BRP, the Dynamic Container Relocation Problem128

(DCRP) [1], considers the arrival of items during the unloading process.129

Both the restricted BRP and the unrestricted BRP have been proven NP-hard [19].130

Naturally, all the problems having the BRP as a particular case, such as the BRP-SP, are131

also NP-hard. When the objective is to minimize the crane working time, the BRP remains132

NP-hard [110]. Papers related to the BRP are listed in Table 2.133

Table 2: References for the Block Relocation Problem
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Azab and Morita [2] X X IP with appointment schedul.
Bacci et al. [3] X -
Bacci et al. [4] X BS
Bacci et al. [5] X B&C IP

Continued on next page
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Table 2 (continued)
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Borjian et al. [8] X X X A∗

Borjian et al. [9] X X X IP with service times
Caserta and Voß [22] X CM
Caserta et al. [18] X H
Caserta et al. [23] X CM
Caserta et al. [19] X X H IP
de Melo da Silva et al. [84] X X X IP
ElWakil et al. [29] X SA
Eskandari and Azari [30] X IP
Expósito-Izquierdo et al. [31] X X A∗ H
Expósito-Izquierdo et al. [32] X B&B IP
Feillet et al. [34] X H
Feng et al. [35] X X X DT H SDP with service times
da Silva Firmino et al. [85] X X A∗ min crane workload
da Silva Firmino et al. [86] X X GRASP min crane workload
Forster and Bortfeldt [38] X X H TS
Galle et al. [41] X X H
Galle et al. [42] X X DT H
Galle et al. [40] X IP
Ji et al. [51] X X GA H IP multi-crane with stowage

plan
Jin et al. [53] X X H
Jovanovic and Voß [57] X H
Jovanovic et al. [54] X X GRASP H with stowage plan
Jovanovic et al. [56] X X X ACO min crane workload with

stowage plan
Kim and Hong [59] X X B&B H
Kim et al. [60] X H
Ku and Arthanari [64] X TS
Ku and Arthanari [63] X X H SDP TS with time windows

Continued on next page
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Table 2 (continued)
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Lee and Lee [68] X X H IP min crane workload
Lin et al. [70] X X X H min crane workload ,

multi-lift crane
López-Plata et al. [71] X X H IP with waiting times
Lu et al. [72] X X X X IP min crane workload with

batch moves
Olsen and Gross [75] X H
Petering and Hussein [78] X H IP
Quispe et al. [80] X B&B ID-A∗

de Melo da Silva et al. [83] X X X X B&B BS block retrieval problem
Tanaka and Takii [93] X X B&B
Tanaka and Mizuno [92] X X B&B
Tanaka and Voß [96] X X X ID-B&B with stowage plan
Tanaka and Voß [97] X IP
Tang et al. [99] X X GA IP slab stack shuffling
Tang and Ren [100] X X CP DP H slab stack shuffling
Tang et al. [101] X X H IP Tabu min crane workload
Tang et al. [98] X H IP
Ting and Wu [104] X BS H
Tricoire et al. [105] X B&B H PM
Ünlüyurt and Aydın [108] X X B&B H min crane workload
Voß and Schwarze [110] X X IP min crane workload
Wan et al. [111] X H IP
Wu and Ting [116] X BS H
Zehendner and Feillet [118] X X B&P IP
Zehendner and Feillet [119] X X B&P IP
Zehendner et al. [117] X IP
Zehendner et al. [120] X H
Zeng et al. [121] X X H IP
Zhang et al. [125] X H TS with batch moves

Continued on next page

7



Table 2 (continued)
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Zhang et al. [123] X B&B BS
Zhu et al. [127] X X H ID-A∗

Zweers et al. [128] X X X B&B H with time windows

Computational experiments in the literature for the BRP can be conducted on the fol-134

lowing datasets, available online.135

• CVS [21, 19]: 840 instances with 3 to 10 stacks, filled with 9 to 100 items. Available136

in [45, 91].137

• ZQLZ [127]: 12,500 instances with 6 to 10 stacks, filled with 15 to 69 items. Available138

in [91].139

• UA [108]: 9,600 instances with 3 to 7 stacks, filled with 6 to 39 items. Available in140

[26].141

• GBMBJ [42]: instances for the stochastic BRP. Available in [39].142

• KA [63]: instances for the BRP with time windows. Available in [62].143

• JTNV [54]: instances for the BRP with stowage plan. Available in [58].144

2.2. PreMarshalling Problem145

Another way of reducing the time required for unloading a storage area is to rearrange146

the layout before the first retrieval. We call an item misplaced if it is located above an item147

of higher priority or another misplaced item. The goal of the PreMarshalling Problem148

(PMP) [67] is to "clean" a given layout, i.e. to reorganize its items in such a way that149

no item is misplaced, while retrievals are forbidden. Unless specified, we assume that the150

storage area has a maximum stack height and no dummy stack. The most common objective151

function is to minimize the number of relocations.152

Figure 2 illustrates an example of a solution for the PMP on a layout with 9 items placed153

in 3 stacks without height limit. Items are indexed according to their retrieval order. One154

has to relocate items in such a way that they can be retrieved in the given order 1, 2, . . . , 9,155
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without additional relocation. In the first step, items 4 and 8 are misplaced, because they156

are blocking the way of items that need to be retrieved earlier. We can decide to relocate157

items 4 and 8 above item 1, so we can put item 2 on top of item 3. Finally, items 8 and 4158

can be put above item 9. This example requires five moves to clean the layout.159

5
3
8

7
6
1

9
2
4

5
3
8

7
6
1
4

9
2

5
3

7
6
1
4
8

9
2

5
3
2

7
6
1
4
8

9

Figure 2: Example of solution for the PreMarshalling Problem

In the following, we discuss variants of the PMP. The PMP with target layout [67, 84]160

requires that every item is located to a predefined slot. Other variants impose that items161

are moved to specified stacks instead of slots [27], or that each stack contains only one item162

type [67]. In a problem tackled in [49], items belong to groups that must be relocated to163

dedicated locations. Rendl and Prandtstetter [82], Boge et al. [6] study the PMP where the164

retrieval order is uncertain. Minimizing the crane working time has been considered as an165

alternative objective function [77]. The 2-Dimensional PMP (2D-PMP) [106] aims at166

making items retrievable using a reach stacker, i.e. items must be well ordered vertically as167

well as horizontally.168

The pure PMP has been proven NP-hard, even when the maximum stack height b is169

fixed, for any b ≥ 6 [15]. However, the question of deciding whether the pure PMP has a170

feasible solution can be solved in O(n) [6]. Table 3 lists the references related to the PMP.171

Numerous datasets are available for computational experiments on PMP instances, which172

are available in [65, 90].173

• CV [21, 19]: 840 instances with 3 to 10 stacks, filled with 9 to 100 items.174

• BF [10]: 640 instances with 16 to 20 stacks, filled with 48 to 128 items.175

• BZ [15]: 960 instances with 3 to 9 stacks, filled with 6 to 37 items.176

• EMM [33]: two sets of respectively 1200 instances [65] and 950 instances [102], with 4177

to 10 stacks, filled with 8 to 40 items.178

• LC [66]: 41 instances, with 10 to 12 stacks, filled with 35 to 54 items.179

• ZJY [124]: 100 instances with 6 to 9 stacks, filled with 17 to 25 items.180

3. Mathematical formulations181

Mathematical formulations are a convenient way to formally describe problems and to182

compute optimal solutions. Although Integer Programming (IP) models are not yet suitable183
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Table 3: References for the PreMarshalling Problem

Reference Methods Notes

Boge et al. [6] IP uncertain priority classes
Bortfeldt and Forster [10] TS
Caserta and Voß [21] CM
de Melo da Silva et al. [84] IP
Expósito-Izquierdo et al. [33] H
Gheith et al. [44] GA
Hottung and Tierney [48] GA
Hottung et al. [47] TS
Huang and Lin [49] H with target locations
Jin and Yu [52] ID-B&B
Jovanovic et al. [55] H
Lee and Hsu [67] H IP with target locations
Lee and Chao [66] H
Parreño-Torres et al. [76] IP
Parreño-Torres et al. [77] B&B IP minimize crane time
Prandtstetter [79] B&B DP H
Rendl and Prandtstetter [82] CP H uncertain retrieval times
Tanaka and Tierney [94] ID-B&B
Tanaka et al. [95] B&B
Tierney et al. [102] A∗ ID-A∗

Tierney and Voß [103] ID-A∗ uncertain retrieval times
Tus et al. [106] ACO PM 2D-PMP
van Brink and van der Zwaan [15] B&P IP
Voß [109] -
Wang et al. [112] BS H with/without buffer stack
Wang et al. [113] H
Zhang et al. [124] B&B H

for solving large instances, there have been significant improvements in recent years. Some184

authors also designed Constraint Programming (CP) models. Both IP and CP models can185

be handled by free and commercial solvers whose performance improves over time. We186

also include Dynamic Programming (DP) models in this section. The following review of187

models is split into four parts, each focusing on one class of stacking problems: loading,188

premarshalling, unloading, and combined problems.189

3.1. Formulations for the Block Relocation Problem190

Wan et al. [111] introduce the first IP-based method, named MRIP, for the restricted191

BRP. Their formulation assumes that at each retrieval, relocated items can be moved at192
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most once. Due to a large number of variables and long computational times, they describe193

a heuristic based on MRIP. Instead of considering the retrieval of all items in a single model,194

they solve a series of reduced MRIPK models considering the retrieval of the next K items195

only. After the retrieval of a single item, a new MRIPK model is considered, and the process196

goes on. The MRIP-based heuristic reduced the number of relocations compared to the LS197

[122], RI [74] and ENAR [59] heuristics (described in Section 4), but computational times198

were longer. Wan et al. [111] also applied the MRIP-based method when new items arrive199

at the storage area during the unloading process. Tang et al. [101] follow the structure of200

MRIP to formulate an IP model optimizing a weighted sum of the number of relocations201

and the crane traveling distance. They also model the scenario where the shape of items is202

round. Tang et al. [98] improve the MRIP model (we call it MRIP2) by removing variables203

and adding constraints. MRIP2 took shorter computational times (one-third of MRIP for204

the largest instances) and could solve more large instances than MRIP.205

Two of the most cited IP models are in [19] for the BRP. The first model, BRP-I, solves206

the unrestricted BRP. The time horizon is discretized into periods during which a single207

move (relocation or retrieval) can be performed. The variables are distinguished into two208

sets, one for defining feasible layouts, and one for defining feasible moves. A drawback of209

the BRP-I model is that the user has to provide an upper bound of the number of moves.210

The second model, named as BRP-II, forbids voluntary moves. Thus, it does not require an211

upper bound of the number of moves and significantly reduces the feasible region, thus can212

solve larger instances.213

Several authors [32, 30, 117] found issues in the BRP-II model for the restricted BRP214

such as erroneous constraints. Expósito-Izquierdo et al. [32] introduce a corrected model215

BRP-II*. Also, Eskandari and Azari [30] add several valid inequalities to their corrected216

model BRP2ci, resulting in computational times decreased by a factor of 25. Zehendner et al. [117]217

also describe an improved model called BRP-II-A, where some variables and parameters are218

removed, and constraints are tightened. Besides, they introduce a new upper bound, and a219

preprocessing step fixing some variables. The preprocessing step removed 65 to 89 % of the220

variables, so they could solve instances with more than 25 items. Voß and Schwarze [110]221

give an in-depth analysis of different objectives for BRP-II-A, including the number of relo-222

cations and the crane working time.223

Galle et al. [40] enhance the binary encoding introduced in [18] and derive a new IP224

model (CRP-I) from it. Previous models for the restricted BRP described layouts with225

variables describing item-stack assignments. In contrast, CRP-I uses variables to determine226

whether an item is below another item. This leads to much fewer variables. Within a time227

limit, CRP-I could solve significantly more instances compared to BRP-II-A. In further228

experiments, CRP-I outperformed BRP-II* and BRP2ci in terms of computational time.229

CRP-I solved with the commercial solver Gurobi has also shown good performance compared230

to B&B methods from [32, 93] and the method from [64].231

Zehendner and Feillet [119] present the first Column Generation approach for the re-232

stricted BRP. They decompose BRP-II into a master problem and a pricing subproblem,233

both formulated as IP models. In the master problem, variables represent sequences of234

moves, each for retrieving a single item. They present three ways to solve the pricing sub-235
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problem: one binary IP model and two enumeration-based approaches.236

Bacci et al. [5] introduce a formulation for the restricted BRP in which the number of237

time periods is equal to the number of items to be retrieved. To cope with the exponential238

number of constraints, the model is solved by a Branch & Cut (B&C) algorithm with a239

custom cutting strategy. In their results, B&C was found more efficient than CRP-I, and240

even the best-so-far B&B method from [92].241

For solving the unrestricted BRP, Petering and Hussein [78] improve the BRP-I model242

by removing unnecessary variables. Results show that with the new model called BRP-III,243

CPLEX achieves significantly shorter computational times, by a factor of 100 on some in-244

stances. The LP relaxation also offers a tighter upper bound compared to BRP-I.245

de Melo da Silva et al. [84] present two models, BRP-m1 and BRP-m2 for the unre-246

stricted BRP with duplicate priorities. The main difference between the two is that BRP-m1247

allows only one move per time step, while BRP-m2 allows one retrieval and one relocation248

at the same time step. Thus, the size of BRP-m2 can be reduced compared to BRP-m1.249

Whereas BRP-m1 obtained better linear relaxations, BRP-m2 was on average faster than250

BRP-III and BRP-m1. Note that BRP-m1 and BRP-m2 can also solve the restricted BRP251

in their respective variants, R-BRP-m1 and R-BRP-m2.252

Whereas most of the BRP formulations define binary variables to determine whether253

an item is located at a given slot at a given time, Lu et al. [72] propose a strong formu-254

lation (BRP-m3) with a different approach. They instead use variables that describe the255

adjacency relationship between pairs of items. Their formulation can be easily modified to256

solve eight variants of the BRP, including the restricted/unrestricted BRP, with/without257

duplicate priorities, and with/without complete retrieval. Besides, the authors introduce258

a MIP relaxation-based iterative procedure that solves a relaxed version of BRP-m3 and259

strengthens the latter until the optimality criterion regarding BRP-m3 is met. BRP-m3260

achieved shorter computational times than BRP-m2.261

Tanaka and Voß [97] reformulate the restricted BRP as the problem of finding an optimal262

combination of relocation sequences. Thus, the authors introduce an IP model in which263

each variable encodes a relocation sequence of a single item, and constraints avoid selecting264

conflicting sequences. Since the number of variables and constraints is large in practice,265

they use an iterative approach. The algorithm starts with a limited number of truncated266

relocation sequences. Then the algorithm repeatedly solves the model with the sequences267

being extended and coupling constraints being added on-the-fly until the optimality gap268

becomes zero. This approach obtained a better performance than an enhanced version of269

the Branch & Bound from [93] and the Branch & Cut from [5]. Moreover, this IP-based270

approach could solve all the instances with up to 100 items to optimality within one hour.271

Models for the pure BRP are summarized in Table 4. The following works tackle variants272

of the BRP.273

Galle et al. [40] show that CRP-I can be easily extended to solve the three following BRP274

variants: (1) with non-uniform relocation costs, (2) minimizing the crane travel distance,275

and (3) with one voluntary move allowed per retrieval. Lu et al. [72] modify BRP-m3 to276

tackle the following variants: (1) BRP with penalty coefficients, (2) BRP considering energy277

consumptions, (3) BRP subject to stacking restrictions, (4) BRP considering retrieval pace.278
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Table 4: Mathematical formulations for the pure BRP

Model Restricted Unrestricted Duplicate
priorities References

BRP-II X Caserta et al. [19]
BRP-II* X Expósito-Izquierdo et al. [32]
BRP2ci X Eskandari and Azari [30]
BRP-II-A X Zehendner et al. [117]
CRP-I X Galle et al. [40]
BC-RBRP X Bacci et al. [5]
Relocation sequences X Tanaka and Voß [97]
R-BRP-m1/2 X X de Melo da Silva et al. [84]
BRP-I X Caserta et al. [19]
BRP-III X Petering and Hussein [78]
BRP-m1/2 X X de Melo da Silva et al. [84]
BRP-m3 X X X Lu et al. [72]

Ji et al. [51] propose an IP model for a variant of the BRP with Stowage Plan, where items279

of a source storage area have to be retrieved to fill multiple destination storage areas with280

designated slots. The goal is to determine a loading sequence minimizing the number of281

relocations. da Silva Firmino et al. [86] use the BRP-II* and BRP-II-A as a base of a new282

IP model (we call it BRP-F) optimizing the crane working time. López-Plata et al. [71]283

aim at solving the BRP with waiting times. Their IP model minimizes the differences284

between the actual and the expected retrieval times. Tang et al. [99], Tang and Ren [100]285

tackle the Slab Stack Shuffling problem. The main difference with the pure BRP is that286

items belong to families. Families are given as a sequence and one item per family must be287

chosen for retrieval. Tang et al. [99] model the SSS minimizing the number of relocations288

where relocated items are pushed back. Tang and Ren [100] formulate an IP model for289

minimizing the total crane workload. Zeng et al. [121] formulate an IP model based on290

MRIP and MRIP2, to solve a restricted BRP in which items are split into groups to be291

picked up in a certain order. However, the pickup order of items within a same group is292

unknown. The IP model integrates additional variables to decide the pickup order within293

groups, to minimize the number of relocations. Feng et al. [35] propose a stochastic Dynamic294

Programming model for the stochastic BRP with flexible service policies to minimize the295

expected number of relocations. Each item is associated with a time window, during which296

a truck arrives for pickup. An optional second objective aims at minimizing the truck297

waiting times. Inspired by BRP-I, Azab and Morita [2] propose two IP models that allow298

rescheduling the retrieval times of items within time windows.299

3.2. Formulations for the PreMarshalling Problem300

Lee and Hsu [67] introduce the first IP model for the PMP, composed of a multi-commodity301

flow problem and a set of side constraints. Three extensions are proposed: (1) one can im-302
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pose a target final layout, (2) one imposes that each stack contains only one item type,303

and (3) one allows items to leave the storage area during the premarshalling process.304

de Melo da Silva et al. [84] present a model (PMP-m1) that decreased significantly the com-305

putational times compared to [67]. Note that their model can solve the PMP with a target306

final layout. Parreño-Torres et al. [76] designed four models named IP3 to IP6. All the307

models use two groups of variables, x representing the layout at a given time, and y rep-308

resenting the moves. The main difference between the IP3 to IP6 models is that a set y is309

indexed by 3 to 6 values, respectively. Also, the authors provide alternative formulations310

IPS3 to IPS6 that split the set y into two sets of variables, one indicating the origin and311

one indicating the destination of the move. Experiments showed that splitting the vari-312

ables led to shorter computational times, IPS6 being the fastest. Compared to [67] and313

PMP-m1, IPS6 was also significantly faster. The authors have extended the model for the314

following goals: (1) limiting the height difference between adjacent stacks in the final layout,315

(2) avoiding empty or full stacks, (3) imposing mimimum and maximum stack heights, (4)316

favoring that same-priority items share the same stack. Parreño-Torres et al. [77] use IPS6317

as the base for proposing the IPCT model, to solve the PMP minimizing the crane working318

time. van Brink and van der Zwaan [15] decompose the PMP as a master problem and a319

pricing subproblem, suitable for Column Generation algorithms. They formulate the master320

problem as an IP model, in which each variable corresponds to a stack and a sequence of321

moves. The pricing subproblem is similar to finding a maximum weight independent set in322

a circle graph. As an alternative to IP models, Rendl and Prandtstetter [82] formulate the323

PMP using Constraint Programming. Besides the classical PMP, they propose a model for324

the robust PMP where retrieval times are uncertain.325

Boge et al. [6] tackle a PMP where the retrieval order of items is uncertain. They decom-326

pose the main problem into a master problem and an adversary subproblem. The master327

problem, formulated as two IP models, maximizes the maximum number of misplaced items328

over all scenarios. The adversary subproblem, also formulated as an IP model, aims at find-329

ing worst-case scenarios. An iterative method starts with an arbitrary scenario. Solving the330

master problem gives a candidate solution that is then evaluated by solving the adversary331

subproblem. If both objectives are equal, the solution is optimal. Otherwise, the scenario332

generated by the adversary subproblem is added to the master problem, and the process333

is repeated. Dayama et al. [27] formulate several IP models for the Container Stack Rear-334

rangement Problem (CSRP), where each item has to be moved to a specified destination335

stack, but no vertical order of items is required. During the process, blocking items are336

placed in a temporary staging area and later pushed back to their original stack.337

3.3. Future directions338

IP models have been dramatically improved during the last years. For the BRP, the339

formulation from [97] and BRP-m3 [72] achieve the best computational times. The former340

can solve the restricted BRP instances with 10 stacks and 6 items per stack within seconds,341

that are typical layouts in container terminals. BRP-m3 achieves also competitive results,342

instances of the unrestricted BRP with 5 stacks and 5 items per stack being solved within343

one hour. For the PMP, IPS6 [76] may be the actual best model, solving instances having 6344
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stacks and 4 tiers within one hour. Nevertheless, the promising decomposition from [15] has345

not been compared yet. To the best of our knowledge, the IP-based iterative method from346

[97] and Branch & Bound methods [92, 95] are the current fastest exact methods for the347

BRP and the PMP. Note that IP models have the advantage of following the performance348

improvements of IP solvers. Therefore, their computational times should reduce over time349

with no change required.350

In the meantime, further research might consider the following aspects. The vast majority351

of the models maintain variables that assign items to slots. Using variables determining352

whether items are stacked on top of other items as suggested in [72] can significantly reduce353

the number of variables. To the best of our knowledge, such an approach has not been354

proposed for the PMP. Besides, tighter upper bounds may be found to discretize the time355

horizon in fewer time periods. Besides, BRP-m3 has not been compared with some recent356

IP models for the BRP such as BC-RBRP. de Melo da Silva et al. [84] note that their357

model R-BRP-m1 gave the most promising results for solving the restricted BRP, but did358

not outperform CRP-I. Including a preprocessing step as in [40] to remove variables may359

reduce the computational times of R-BRP-m1. Galle et al. [40] suggest a way to increase360

the efficiency of CRP-I by including the combinatorial lower bounds from [127, 93].361

Due to common characteristics of stacking problems, ideas that work for the BRP could362

work with the PMP. A trending topic is the incorporation of uncertainty, leading to robust363

models. A direction to investigate may be to extend existing formulations for different types364

of uncertainty. In this survey, we listed one Constraint Programming (CP) approach and a365

few Column Generation-based (CG) formulations. Further investigation is required to check366

whether CP is an efficient approach. Since they require only a small subset of variables, CG367

algorithms have been used in other domains and have been successful for solving real-world368

instances. Moreover, to the best of our knowledge, the approaches from [15] and [119] have369

not been compared with the recent IP models. Another direction is to investigate whether370

the successful iterative approach from [97] can be adapted to the unrestricted BRP or the371

PMP. Finally, researchers may consider formulating more time-based stacking problems such372

as [9] to fit more realistic constraints such as service times.373

4. Heuristics374

Due to their similar structure, the BRP and the PMP often share common types of375

decisions. We distinguish two types of decisions that characterize most stacking problems.376

• Item selection. Choosing the next item to operate occurs in particular when several377

items are simultaneously available for placement or relocation. This is a decision that378

permanently occurs in the PMP. In the unrestricted BRP, one may have to decide379

whether to move a blocking item or perform a voluntary move. The restricted BRP380

may encounter this type of decision when multiple items have the same departure time381

(duplicate priorities).382

• Stack selection. When an item of interest has been chosen, one has to determine its383
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destination stack. This type of decision is considered in both the PMP and the BRP,384

at each relocation.385

We classify heuristics in three categories: item selection heuristics, stack selection heuris-386

tics, and complex heuristics. The two former categories cover heuristics that focus on the387

previous decision types. Heuristics that do not fall into the two categories, use advanced388

techniques, or take simultaneous decisions, are considered complex heuristics. A list of389

references and heuristics can be found in Table 5.390

Table 5: Summary of heuristic methods

Problems

Reference Methods rB
R
P

uB
R
P

P
M
P

Notes

Caserta et al. [18] Matrix X
Caserta et al. [19] MinMax X X
Expósito-Izquierdo et al. [33] LPFH X
Expósito-Izquierdo et al. [31] DSKB X X
Feillet et al. [34] Local search X
Feng et al. [35] Expected MinMax X stochastic BRP with service

times
Forster and Bortfeldt [38] SGREEDY X
Galle et al. [41] MinMax X X
Galle et al. [42] MinMax, EGA X
Huang and Lin [49] Labeling X
Ji et al. [51] Rule-based X multi-crane with stowage

plan
Jin et al. [53] GLAH X
Jovanovic and Voß [57] MinMax, Chain X
Jovanovic et al. [55] LPI, Multi X
Jovanovic et al. [54] MinMax, MinB X with stowage plan
Kim and Hong [59] ENAR X
Kim et al. [60] Rule-based X
Ku and Arthanari [63] ERI X with time windows
Lee and Hsu [67] IP-based X
Lee and Chao [66] IP-based X
Lee and Lee [68] LL X minimize crane time
Lin et al. [70] Rule-based X minimize crane time
López-Plata et al. [71] Look-ahead X with waiting times
Olsen and Gross [75] Extended MinMax X
Petering and Hussein [78] LA-N X

Continued on next page
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Table 5 (continued)

Problems

Reference Methods rB
R
P

uB
R
P

P
M
P

Notes

Prandtstetter [79] DP-based X
Rendl and Prandtstetter [82] Specialized search X
Tang and Ren [100] X slab stack shuffling
Tang et al. [101] Rule-based X
Tang et al. [98] H1-H5, IP-based X
Ting and Wu [104] VRH X
Tricoire et al. [105] SM-2, SmSEQ-2 X
Ünlüyurt and Aydın [108] EAR, Difference X
Wan et al. [111] MRIP X
Wang et al. [112] Target-guided X
Wang et al. [113] Feasibility-based X
Wu and Ting [116] RIL X
Zehendner et al. [120] Leveling X
Zeng et al. [121] H1-H6, IP-based X
Zhang et al. [124] α/β, E/H X
Zhang et al. [125] Greedy X with batch moves
Zhu et al. [127] PR1-4, PU1-4 X X
Zweers et al. [128] Local-search X stochastic BRP with time

windows

4.1. Item selection heuristics391

The main challenge of the PMP is to find a finite sequence of moves that leads to a layout392

without misplaced items. Without a temporary storage area, the order in which a heuristic393

rearranges items may impact whether it finds a feasible solution or not. Methods proposed394

such as the Corridor Method (described in Section 5) from [21] or the Tree Search Procedure395

from [10] do not guarantee that a final solution is found. To deal with this issue, LPFH [33]396

handles misplaced items from the latest to earliest departure time. The idea is that once an397

item with the latest departure time is well-placed, it will no longer interfere with the rear-398

rangement of the rest of the items. To choose among items having the same departure time,399

LPFH calculates the number of required moves for each of them, and randomly selects one400

from a restricted candidate list. Target-guided algorithms fix items at appropriately chosen401

locations and avoid further moves afterward, although Wang et al. [112] still treat misplaced402

items by decreasing departure times. In contrast, the Feasibility-based heuristic [113], which403

is also Target-guided, does not impose a predetermined order of item rearrangement. In-404

stead, the heuristic detects and prunes decisions that lead to undesirable states before their405
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application.406

Item selection decisions also occur in the unrestricted BRP (since the latter allows vol-407

untary moves) and the BRP with duplicate priorities. In the BRP with duplicate priorities,408

one has to choose between items of the same priority. Kim and Hong [59] apply the ENAR409

heuristic for each candidate target item and select the action obtaining the minimum ex-410

pected number of additional relocations (plus realized relocations). The PU1 heuristic [127]411

considers voluntary moves only when a relocated item is about to remain misplaced. If a412

topmost item is the earliest of its stack, and a voluntary move does not make it misplaced,413

then PU1 considers it as a better candidate. Forster and Bortfeldt [38] evaluate forced re-414

locations as well as voluntary moves with a generalization of MinMax from [19] (SGREEDY)415

to determine the next action. The former approach reduced the average number of moves416

by 8.7 % with shorter computational times compared to LL, an IP-based heuristic described417

in Section 4.3.2 [37]. The LA-N heuristic [78] allows voluntary moves for items that belong418

to a stack containing one of the N next items to retrieve. To choose among target items of419

the same priority, Jin et al. [53], Lin et al. [70] first retrieve items having fewer items above.420

For the unrestricted BRP, Jovanovic et al. [56] define Gre-C and Gre-N, heuristics based421

on MinMax. Gre-C considers relocating misplaced items, including items not above the422

target. Gre-N considers relocating any item, including well-placed ones. Well-placed items423

are a candidate for relocation only in certain conditions. Tanaka and Voß [96] improve the424

greedy heuristic used in [54] for the BRP with storage plan allowing voluntary moves.425

4.2. Stack selection heuristics426

Numerous heuristics from the literature are based on decision indexes for choosing desti-427

nation stacks for incoming or relocated items [86]. The basic idea is to compute a desirability428

score for every possible choice and to select a stack having the best score or randomly among429

a restricted candidate list of elite stacks. The Leveling heuristic (also called Lowest Slot)430

selects a stack containing the minimum number of items. For breaking ties, one may choose a431

stack randomly [111], or select the first stack of the list [7, 120]. For the online BRP, Leveling432

guarantees a competitiveness ratio of 2d n
m
e−1, for a storage area with n items and m stacks433

[120]. A drawback of Leveling is that it does not take advantage of information such as the434

due times of items. To overcome this issue, the Reshuffle Index (RI) heuristic [74] assigns435

the current item to a stack containing the minimum number of items departing earlier. An436

extension of RI called Reshuffle Index with Look-ahead (RIL) [116] breaks ties by437

choosing a stack in which the earliest departure time is the latest. RI has also been adapted438

for the BRP with time windows [63] and named as Expected Reshuffle Index (ERI). The439

Expected Number of Additional Relocations (ENAR) [59] estimates the number of440

relocations to be added if items from other stacks are relocated to the candidate stack. To441

do so, ENAR recursively computes probabilities and derive an expectancy. Wan et al. [111]442

improve ENAR, Leveling, and RI, by computing decision indices based on the resulting443

layout after move instead of the current layout. Ünlüyurt and Aydın [108] adapt ENAR to444

take into account the crane’s horizontal travel. The Average Time Index-Based (ATIB)445

heuristic [1] selects a stack with the latest average departure time.446
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When relocations cannot be avoided, a good strategy is to postpone them as much as447

possible. To do so, Ünlüyurt and Aydın [108] propose theDifference heuristic for the BRP.448

Difference first considers stacks in which all items have later departure times and selects449

one containing the earliest time. If no such a stack exists, among stacks having a topmost450

item departing later, one having the earliest topmost item is chosen. Otherwise, Difference451

selects a stack in which the topmost item has the latest departure time.452

A similar and very popular greedy heuristic for the BRP is MinMax from [19]. Like453

Difference, MinMax first considers stacks in which all items have later departure times and454

selects one containing the earliest one. If all stacks contain at least one item departing455

earlier, MinMax selects a stack having the latest departure time. Zhu et al. [127] design a456

variant ofMinMax called PR4, that introduces an additional rule when every choice leads to457

additional relocations. Jovanovic and Voß [57] improve MinMax by avoiding the creation of458

new deadlocks when a stack is going to reach the maximum height. Jovanovic et al. [54] and459

Tanaka and Voß [96] extend MinMax for the restricted and unrestricted BRP with stowage460

plan, respectively. The Expected MinMax [42] adapts MinMax for the Stochastic BRP,461

in which the retrieval order is not fully known in advance. The latter heuristic is extended462

in [35] for the Stochastic BRP with flexible service policies, in which items are associated463

with time windows during which a truck arrives for pickup.464

A way for improvement is to look ahead within the heuristic search. Caserta et al. [18]465

introduce the Matrix heuristic for the BRP, a look-ahead algorithm that encodes layouts466

as binary matrices. The LA-N heuristic [78] extends MinMax by considering the N next467

retrievals to determine eligible relocations. In the Chain heuristic, Jovanovic and Voß [57]468

redefine MinMax to take into account the next item to relocate. The Virtual Relocation469

Heuristic (VRH) [104] for the restricted BRP, inspired by Chain, determines simultane-470

ously destination stacks for all items blocking the current target. The SmSEQ-2 heuristic471

[105] includes a rule detecting decreasing sequences of departure times of consecutive items.472

The idea is that if the topmost item can be relocated without causing future relocations,473

the whole sequence can be relocated in the same destination stack. Otherwise, the heuristic474

falls back to a simpler one, SM-2, that attempts to avoid conflicts by performing safe475

relocations.476

The Lowest Priority First Heuristic (LPFH) [33] for the PMP gives a score to each477

candidate stack, and randomly selects one among a restricted list of stacks having the best478

scores. LPFH chooses a destination stack for the target item, then for the items above it.479

For the target item, LPFH favors stacks having the minimum number of items to be removed480

to make it well-placed. For items above it, LPFH prefers stacks having no misplaced items481

or stacks in which misplaced items have the latest departure times. The latter rule is called482

Lowest Priority Index (LPI) [55].483

We remind that the PMP does not always admit a feasible solution. To our knowledge,484

no heuristic explicitly allows exceeding the maximum stack height when no feasible solution485

can be constructed. When the maximum stack height cannot be increased, a workaround is486

to allow using a dummy stack, as in [112].487
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4.3. Complex heuristics488

4.3.1. Rule-based heuristics489

Rule-based algorithms may have a complex structure, although easy to implement. The490

Blocking Index (BI) of a stack is the number of items blocking the earliest item after putting491

the current item. Based on the RI and the BI, Tang et al. [98] describe five rule-based492

heuristics, H1-H5, for the restricted BRP. These heuristics were also applied to the DCRP,493

in which incoming items arrive during the unloading process. Lin et al. [70] describe a rule-494

based algorithm for the restricted BRP that takes into account the crane movement time and495

features specific to container terminals, such as inter-bay relocations. The latter algorithm496

is challenged by another rule-based algorithm [60] that applies for the unrestricted BRP.497

For the PMP, the strategy in [49] is to label stacks as clean (i.e. without misplaced498

items) or dirty (i.e. containing misplaced items), and to fill up clean stacks to make some499

stacks empty. Afterward, items from dirty stacks are moved to empty stacks while avoiding500

unordered stacks. For the PMP where items have target cells, the authors propose to label501

each stack with the number of items that need to be removed and the number of other502

items. The algorithm finds moving paths while scanning stacks one after another until the503

number of items that need to be removed is reduced to zero. Zhang et al. [124] propose504

one heuristic (α/β) that also distinguishes clean and dirty stacks, and another (E/H) that505

distinguishes "easy" and "hard" stacks. Hard stacks are dirty stacks in which items are506

in the reverse order of priority. α/β rearranges dirty stacks in an arbitrary order. E/H507

first rearranges easy stacks, then hard stacks. Jovanovic et al. [55] extend LPFH for the508

PMP into a Multi heuristic framework to incorporate arbitrary rules. Multi requires four509

heuristic components: (1) to select the target item, (2) to select a destination stack for the510

target item, (3) to move items above it, (4) to fill the destination stack with well-placed511

items. In particular, the authors test Leveling, LPI, and MinMax as components for (3).512

The Domain-Specific Knowledge-Based (DSKB) heuristic [31] for the restricted513

BRP constructs new solutions until no improvement is observed for a certain number of514

iterations. At each step of the construction of a single solution, the heuristic attempts to515

reach a state in which the current item is retrieved and the number of future relocations516

is minimized. For the BRP, Jin et al. [53] propose a Greedy Look-Ahead Heuristic517

(GLAH) split into three levels. The top level is a greedy mechanism that executes one518

relocation at each stage. The middle level runs a tree search of limited depth (3 or 4) to519

guide the greedy mechanism at the first level. The bottom level applies a set of heuristic rules520

extended from [127] to evaluate leaf nodes explored in the second level. Also, the authors521

apply a solution condensation approach, improved in [105]. It transforms two relocations522

into one when some conditions are satisfied, without sacrificing feasibility. GLAH has been523

adapted for a Steel Stacking Problem [81].524

4.3.2. IP-based heuristics525

Some works exploit the idea of embedding exact methods such as IP solvers in heuristic526

methods. Wan et al. [111] introduce an IP-based look-ahead heuristic, MRIP, for the BRP.527

At each step, the algorithm determines the destination stack of blocking items by solving528

an IP model (MRIPK) that considers the retrieval of the next K items. MRIP is further529
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improved and extended in [98, 121]. A similar idea has been adapted for the DCRP [1].530

The idea of using IP models in heuristic methods is further developed in [68]. LL is a531

three-phase method for the restricted BRP. The initial phase builds a complete solution in532

a greedy fashion by relocating blocking items in the nearest available stack. A movement533

reduction phase and a time reduction phase attempt to reduce, respectively, the number534

of moves and the crane working time of the initial solution. During these two phases, the535

algorithm finds alternate paths for items and assembles them into a super-sequence of moves.536

After identifying all possible conflicts of the super-sequence, an IP determines a best feasible537

combination of alternate paths.538

For the PMP, Lee and Hsu [67] solve iteratively a relaxed IP model. At each iteration,539

constraint violations are detected, and new constraints are added to the model until a set of540

movements satisfying conditions is obtained. However, the obtained sequence of movements541

may contain cycles. In the second phase, the algorithm attempts to break these cycles in542

the movements by introducing new movements. Lee and Chao [66] describe an algorithm543

for the PMP, starting from an initial sequence of movements, and iteratively running two544

major subroutines. First, a neighborhood search builds a new feasible sequence of moves by545

randomly modifying the current one. Second, a binary IP is solved to shorten the sequence546

of moves while keeping the final layout. Besides, three minor subroutines further improve547

the solution.548

4.3.3. Post-processing heuristics549

Existing heuristics can be improved by post-processing techniques. Previously discussed550

IP-based heuristics [67, 66] commonly use post-procesing techniques. For the unrestricted551

BRP, Feillet et al. [34] develop a local search heuristic based on dynamic programming.552

Their method reached improvements of up to 50% on solutions built by LA-N, SM-2,553

SmSEQ-2 and GLAH. Another local search heuristic is described in [128] for the stochas-554

tic BRP. The heuristic attempts to convert moves that keep items misplaced to moves that555

make them well-placed, therefore decreasing the number of forced moves. Zweers et al. [128]556

develop a local search heuristic for the stochastic BRP inspired by the Expected MinMax557

[42] and LPFH [33].558

4.4. Future directions559

For the BRP, the most competitive heuristics are GLAH [53], SM-2, and SmSEQ-2560

[105]. Whereas SmSEQ-2 obtains the fewest relocations, GLAH and SM-2 achieve shorter561

computational times. Experiments from [105] suggest that as instance size grows, state-of-562

the-art heuristics are still far from optimal solutions. Indeed, a local search heuristic can563

significantly improve the solutions obtained by these heuristics [34]. Future research may564

consider the design of more efficient improvement methods.565

Due to the larger solution space, the unrestricted BRP yields more opportunities for566

improvement than the restricted BRP. Existing heuristics for the unrestricted BRP could567

be accelerated by intelligently limiting the search space explored [34]. Better solution quality568

could be obtained by using look-ahead mechanisms, especially in local search methods.569
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Some heuristics designed for the BRP have been successfully adapted to variants of the570

BRP, such as the BRP with stowage plan. A research direction can be to extend existing571

methods to cover a wider range of stacking problems, and to tackle more realistic constraints.572

Fewer heuristics have been developed for the PMP, suggesting research opportunities.573

The Multi heuristic [55] and the Feasibility-based heuristic [113] show the best results for574

the PMP.575

Finally, a few works have analyzed heuristics theoretically. For the BRP, Olsen and Gross [75]576

perform a probabilistic analysis of a heuristic that is closely related to MinMax. MinMax577

is on average at most 1.25 away from the optimal solution [41]. More theoretical analysis578

could be made for various heuristics. Moreover, the study of the online BRP [120] can be579

extended to the assumption where the retrieval order is defined for groups of items rather580

than single items.581

5. Metaheuristics582

Due to their flexibility, metaheuristics are often used for solving problems involving583

realistic constraints. Metaheuristics include Ant Colony Optimization (ACO), Corridor584

Method (CM), Genetic Algorithms (GA), Greedy Randomized Adaptive Search Procedure585

(GRASP), Pilot Method (PM), Simulated Annealing (SA) algorithms. This section describes586

these metaheuristics along with their characteristics. Table 6 summarizes references using587

metaheuristics and which problems they tackle.588

Table 6: Summary of metaheuristics

Problems

Reference Methods rB
R
P

uB
R
P

P
M
P

Notes

Jovanovic et al. [56] ACO X X minimize crane time with stowage plan
Tus et al. [106] ACO PM X 2D-PMP
Caserta and Voß [22] CM X
Caserta and Voß [21] CM X
Caserta et al. [23] CM X
Gheith et al. [44] GA X variable-length GA
Hottung and Tierney [48] GA X
Ji et al. [51] GA X multi-crane with stowage plan
Tang et al. [99] GA X slab stack shuffling
Jovanovic et al. [54] GRASP X with stowage plan
da Silva Firmino et al. [86] GRASP X minimize crane time , reactive GRASP
Tricoire et al. [105] PM X
ElWakil et al. [29] SA X

Continued on next page
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Table 6 (continued)

Problems

Reference Methods rB
R
P

uB
R
P

P
M
P

Notes

Tang et al. [101] Tabu X

5.1. Ant Colony Optimization589

Tus et al. [106] introduce an Ant Colony Optimization (ACO) algorithm for the Two-590

Dimensional PMP (2D-PMP), where reach stackers can access items from the left and the591

right of the storage area. The idea of ACO is to store a pheromone matrix that remembers592

experience gained by previously produced solutions. At each iteration, a colony of artificial593

ants generates solutions guided by the pheromone trails, the latter being updated accord-594

ing to the generated solutions. The authors adopted the Max-Min Ant System (MMAS)595

approach, where only the best ant updates the pheromone trails, and pheromone values are596

bounded. From initial experiments, they found that a state-based pheromone matrix (in597

which each value represents a layout) does not perform well. Instead, they use a move-based598

pheromone matrix, that associates its values to state-move pairs. Since the number of possi-599

ble states is extremely large, pheromone values are created on the fly in a hash table. After600

finding no improvement for a certain number of iterations, the algorithm restarts to avoid601

stagnations. In terms of the number of relocations, MMAS outperformed LPFH and the602

Pilot Method.603

Jovanovic et al. [56] present an ACO algorithm for both the restricted and unrestricted604

BRP, as well as the objective of reducing the crane working time. In their approach, they605

associate the pheromone values to (i, d, p, t) tuples, where i is the item to relocate, d is the606

minimal retrieval time of items in the destination stack (which is set to a large value if the607

stack is empty), p is the number of times item i was moved, and t is the target item. The608

construction algorithms, Gre-C and Gre-N are discussed in Section 4. ACO outperformed609

CM, LA-N, the Domain-Specific Knowledge-Based Heuristic from [31] and the Heuristic610

Tree Search Procedure from [38].611

5.2. Corridor Method612

The Corridor Method (CM) is a method-based iterated local search inspired by dynamic613

programming [87]. Since complex methods can solve efficiently small instances, the idea is614

to use the same methods on a restricted portion of the solution space for large instances.615

The restricted solution space is called a corridor. All the CM variants presented below616

restrict the number of candidate stacks for relocation with a user-defined parameter. For617

the BRP, Caserta and Voß [22] use an algorithm inspired by GRASP to build a pool of618

elite solutions. Then a roulette-type scheme randomly selects a solution from the elite set.619

Caserta et al. [23] also define a vertical corridor, that is a maximum height for stacks. For620
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the PMP, [21] select the next target item with a roulette-wheel mechanism that favors items621

located in stacks involving less forced relocations. Then the choice of destination stacks for622

the items blocking the target is restricted in a similar way as with the BRP. Besides, the623

authors apply a move-based local search to improve the current layout.624

5.3. Genetic Algorithms625

Genetic algorithms (GA) are a class of metaheuristics inspired by the evolution theory626

[28].627

Tang et al. [99] tackle the Slab Stack Shuffling problem, where items belong to families.628

Families are given as a sequence and one item per family must be chosen for retrieval.629

A chromosome is encoded as a sequence of integers, where each value represents an item630

selected for a given family. The authors apply three crossover operators: one-point, two-631

point, and one that exchanges genes one by one with a uniform probability. In addition,632

they test two mutation operators exchanging genes while ensuring feasibility.633

Ji et al. [51] design a GA for a variant of the BRP with Stowage Plan. In this problem,634

items of a storage area have to be retrieved to fill multiple destination storage areas with635

designated slots. The retrieval order is determined by the genetic algorithm, GA-ILSRS.636

Thus, GA-ILSRS encodes solutions as a vector representing a loading sequence. GA-ILSRS637

uses a two cross-bit method for both the crossover and the mutation operators. Finally,638

three heuristics determine the destination stacks of relocated items: nearest stack strategy,639

lowest stack strategy, and a strategy that avoids putting relocated items above the next640

target item (called optimization strategy). The optimization strategy was found to be the641

best, followed by the lowest stack strategy.642

Gheith et al. [44] apply the idea of variable chromosome lengths for the PMP. Chromo-643

somes encode solutions as a sequence of moves, where each gene is a pair origin-destination.644

In addition of a single-point crossover, they apply four mutation operators. A growth and645

a shrink mutations modify the length of the chromosome, whereas a swap and a replace646

mutations improve the solutions while keeping their original length. The fitness function is647

the number of blocking items.648

Hottung and Tierney [48] introduce a Biased Random-Key Genetic Algorithm (BRKGA)649

for the PMP. The random-key GA is a variant of GA where genes consist on a sequence of650

floating point numbers between 0 and 1. The solutions are then produced from genes by651

interpreting them using a non-deterministic decoder. BRKGA is biased since it applies each652

crossover on one random elite and one random non-elite solution. Their original idea is to653

incorporate an online learning mechanism to the construction method. They define a class of654

moves named as excellent moves, that are nearly always present in optimal solutions. When655

these moves are available, they are automatically applied, otherwise a move is selected in a656

heuristic manner. BRKGA outperformed the Heuristic Tree Search Procedure [38], whereas657

it obtained contrasted results compared to the Target-Guided algorithm [112]. BRKGA658

reduced the number of relocations compared to the Corridor Method [21] and LPFH [33]659

(described in Section 4), however, took longer computational times.660
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5.4. GRASP661

The Greedy Randomized Adaptive Search Procedure [36] is a parameterizable algorithm662

combining a constructive phase and an improvement phase. The construction phase in-663

crementally builds a solution. At each step, candidate decisions are evaluated by a utility664

function, and added to a Restricted Candidate List (RCL), if their utility is greater than a665

threshold. The threshold is computed according to a user-defined parameter α to make the666

algorithm more deterministic or more randomized. One decision is then chosen randomly667

from the RCL and added to the partial solution. The improvement phase, typically a lo-668

cal search, attempts to find better solutions by applying simple modifications. In stacking669

problems, decisions are typically choosing a destination stack for an item, or choosing the670

next item to move.671

For reducing the crane working time in the BRP, da Silva Firmino et al. [86] propose a672

Reactive GRASP approach. Reactive GRASP is an extension of GRASP that self-adjusts673

the α parameter during the execution. The authors tested six different utility functions found674

in the literature: LS, RI, RIL, ENAR, LADI [115] and MNI [57]. During the improvement675

phase, the algorithm attempts to find better solutions by replacing moves in the current676

one, until reaching a local optimum. From the experiments, the authors found that the best677

utility function was MNI and adopted it as the scoring function of the Reactive GRASP.678

The average percentage optimality gap of Reactive GRASP with MNI was 1.15%.679

Another GRASP approach is proposed in [54] for solving a restricted version of the680

BRP with Stowage Plan (BRP-SP). The utility function is based on a modified MinMax681

function. Also, their algorithm maintains a precedence graph exploiting the structure of the682

problem. For the improvement phase, they apply a correction procedure to delete moves683

having undesirable properties. GRASP significantly outperformed the GA from [51] by684

reducing the number of relocations by approximatively 30%.685

5.5. Pilot Method686

The Pilot Method (PM) is a look-ahead metaheuristic that takes a construction algorithm687

as an input. At each iteration, every possible decision (e.g. relocation) is evaluated by the688

construction algorithm. The best candidate is selected as the new current partial solution,689

and the process is repeated until the current solution is complete.690

For solving the unrestricted BRP, Tricoire et al. [105] use a Rake Search as the con-691

struction algorithm. Rake Search consists of a breadth-first tree search where the tree is692

generated level by level until the number of nodes reaches a user-defined limit. Afterward,693

the tree search is stopped, and each partial solution is used as a starting point of four given694

construction heuristics. In their experiments, Rake Search was the fastest. Whereas PM695

was significantly slower, results show that it seems more scalable than GLAH from [53]. A696

variant of the Pilot Method has been applied for a stacking problem for the steel indus-697

try, involving stacking and time constraints, as well as buffer stacks [81]. The algorithm698

incorporates a Rake Search as in [105], and a greedy look-ahead heuristic.699

Tus et al. [106] tackle the 2D-PMP, a variant of the PMP where items are relocated by a700

crane but will be retrieved by reach stackers. As a construction algorithm, the authors adapt701
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LPFH from [33] for the 2D-PMP. The latter heuristic is described in Section 4. Results show702

that PM is significantly faster than ACO algorithms at a cost of solution quality.703

5.6. Simulated Annealing704

The Simulated Annealing (SA) is a stochastic method that mimics the cooling of metals.705

SA starts from an arbitrary solution, and generates a new potential solution by altering the706

current one. If the new solution is better than the current one, it is accepted. Otherwise, SA707

accepts the new solution with a probability that varies according to a decreasing temperature708

T .709

The SA in [29] for the restricted BRP constructs iteratively a sequence of moves. The710

cost function of a partial solution sums up the number of realized moves and the number711

of items blocking the target. When a partial solution is accepted, the algorithm determines712

randomly the destination stacks of the blocking items. SA showed better results than Tabu713

search [116] and the Corridor Method [23] on small instances, but not on large ones.714

5.7. Future directions715

Metaheuristics are one of the most promising approaches for solving realistic and complex716

problems, due to their flexibility and their short computational times. For the BRP, Rake717

Search, Pilot Method [105], Reactive GRASP [86], and ACO [56] have shown very competi-718

tive results. To the best of our knowledge, no full comparison has been made between these719

methods. Different metaheuristics may be investigated for solving problems involving side720

constraints such as the 2D-PMP [106].721

Nevertheless, existing methods for classic problems may still be improved for solving722

larger instances. For the BRP, Tricoire et al. [105] observe that metaheuristics may still be723

far from optimal solutions. The settings of the SA from [29] may be tuned to lead to better724

solutions, e.g. by changing the cooling behavior. Besides, metaheuristics could be combined725

with the efficient local search procedure from [34]. For the PMP, Hottung and Tierney [48]726

suggest developing a stochastic version of their GA to obtain more robustness than the727

deterministic version.728

6. Tree search-based methods729

Tree search-based (abbreviated as TS-based) methods include exact methods such as730

Branch & Bound (B&B) as well as approximate methods such as Beam Search (BS). For a731

review of Integer Programming formulations, we refer the reader to Section 3.732

TS-based methods attempt to find a solution by traversing a tree structure. In every733

method presented in this section, a node represents a layout, the root node being the initial734

layout. Child nodes represent layouts in which moves have been performed. The process735

of exploring child nodes is called branching. Bounding refers to the process of eliminating736

nodes that are guaranteed to not contain any better solution than the current best solution.737

To this end, TS-based methods may maintain the global lower and upper bounds of the738

objective function. Each node can be evaluated by computing a lower bound in the case of739

a minimization problem. When a complete and feasible solution is met, its objective value740
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can be used as an upper bound to prune nodes having a greater lower bound. Heuristic741

methods are usually employed to quickly compute such bound. We refer to Section 4 for a742

review of heuristic methods. Pruning can also be performed by applying dominance rules,743

e.g. to avoid symmetry or unproductive moves.744

TS-based methods may differ in the way they explore the solution space. In Branch &745

Bound (B&B) methods, the whole solution space is considered and enumerated, discarding746

subtrees that are guaranteed to not contain optimal solutions unless an optimal solution has747

been previously discovered. In contrast, Beam Search (BS) explores only a predetermined748

number of best partial solutions at each level of the tree. Rake Search, inspired by BS,749

performs a breadth-first tree search where the tree is generated level by level. Once the750

number of nodes reaches a user-defined limit, the tree search is stopped, and each partial751

solution is used as a starting point of fast construction heuristics. Iterative Deepening752

techniques (ID-A∗, ID-B&B) also define a depth limit for the search tree. When no solution753

is found, the maximum depth is increased by one, and the search continues. A summary of754

TS-based methods is available in Table 7. In the rest of this section, we describe TS-based755

methods in terms of components: branching, lower and upper bounds, and pruning.756

Table 7: References for Tree Search-based methods

Problems

Reference Methods rB
R
P

uB
R
P

P
M
P

Notes

Borjian et al. [8] A∗ X X
Expósito-Izquierdo et al. [31] A∗ X X
da Silva Firmino et al. [85] A∗ X
Tierney et al. [102] A∗ ID-A∗ X
Bacci et al. [4] BS X
Ting and Wu [104] BS X
Wang et al. [112] BS X
Wu and Ting [116] BS X
de Melo da Silva et al. [83] BS B&B X block retrieval problem
Zhang et al. [123] BS B&B X machine learning
Expósito-Izquierdo et al. [32] B&B X
Kim and Hong [59] B&B X
Parreño-Torres et al. [77] B&B X
Prandtstetter [79] B&B X
Tanaka and Takii [93] B&B X
Tanaka and Mizuno [92] B&B X X
Tanaka et al. [95] B&B X
Ünlüyurt and Aydın [108] B&B X

Continued on next page
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Table 7 (continued)

Problems

Reference Methods rB
R
P

uB
R
P

P
M
P

Notes

Zhang et al. [124] B&B X
Zweers et al. [128] B&B X stochastic BRP with time windows
Quispe et al. [80] B&B ID-A∗ X abstraction method
Tricoire et al. [105] B&B RS X
Bacci et al. [5] B&C X
Zehendner and Feillet [118] B&P X
Zehendner and Feillet [119] B&P X
van Brink and van der Zwaan [15] B&P X
Feng et al. [35] DT X stochastic BRP with service times
Galle et al. [42] DT X
Tierney and Voß [103] ID-A∗ X robust PMP
Zhu et al. [127] ID-A∗ X X
Jin and Yu [52] ID-B&B X
Tanaka and Tierney [94] ID-B&B X see also [52]
Tanaka and Voß [96] ID-B&B X X with stowage plan
Bortfeldt and Forster [10] TS X
Forster and Bortfeldt [38] TS X
Hottung et al. [47] TS X machine learning
Ku and Arthanari [64] TS X abstraction method
Ku and Arthanari [63] TS X with time windows
Zhang et al. [125] TS X with batch moves

6.1. Branching757

The most intuitive branching procedure is to create a child node at each placement,758

relocation, or retrieval. Nevertheless, for the BRP, creating child nodes for compound759

moves instead of single moves has been shown efficient by several authors. In particular,760

Ünlüyurt and Aydın [108], Borjian et al. [8], Expósito-Izquierdo et al. [32] choose to create761

child nodes at each retrieval, and Forster and Bortfeldt [38], Zhang et al. [125] generate762

compound moves using a recursive function. For choosing the next node to branch, the763

majority of TS-based methods adopt a Depth-First Search (DFS) strategy, but some meth-764

ods such as BS use a Breadth-First Search strategy. Tanaka et al. [95] compare different765

tie-breaking criteria to order the branches for the unrestricted BRP. Tierney et al. [102] es-766

timate a cost for each node and select the node having the minimum value for the PMP.767

Also for the PMP, Hottung et al. [47] determine in which order nodes should be explored768

using Deep Neural Networks trained on more than 900,000 optimal solutions. For the BRP,769
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Zhang et al. [123] adopt a DFS strategy and choose the next node based on its upper bound.770

6.2. Bounds771

We review bounds for each category of stacking problems.772

Table 8: Lower bounds for the pure BRP

Name Restricted Unrestricted Duplicate
priorities References

LB1 X X X Kim and Hong [59]
LB2 X X Zhu et al. [127]
LB3 X Zhu et al. [127]
LB4 X Tanaka and Takii [93]
LB3e X X Tanaka and Takii [93]
LB4e X X Tanaka and Takii [93]
ELB4 X Zhang et al. [123]
LBN X Borjian et al. [8]
LB-LIS X Quispe et al. [80]
LB-PDB X Quispe et al. [80]
LB2u X X Forster and Bortfeldt [38]
LB3u X Tricoire et al. [105]
LBNu X Tanaka and Mizuno [92]
LB4u X Lu et al. [72]
IP-based X X X Section 3

6.2.1. Restricted BRP773

The simplest lower bound (we call it LB1) from [59] is obtained by summing the number774

of realized relocations and the number of blocking items. In some cases, a blocking item775

remains blocking after being relocated to any target stack, thus a further relocation cannot be776

avoided. For the restricted BRP, the lower bound LB2 from [127] improves LB1 by adding777

these unavoidable relocations. Now, consider a target item, and that we have computed778

LB2 for the items above it. Discard these items including the target item. We identify the779

next target item and count the number of unavoidable relocations again as done in LB2.780

Summing up these lower bounds results in LB3 [127]. Repeating this process N times results781

in the look-ahead lower bound (we call it LBN) proposed in [8]. In addition, suppose that782

at least two items are blocking the target item, but there is only one available stack not783

causing unavoidable relocations for these items. When the topmost item is relocated, its784

destination stack might not be a good choice anymore for the next items if their departure785

time is earlier. From this observation, a new lower bound LB4 is deduced from [93]. LB2786

and LB3 are only valid for the restricted BRP [127], LB3 and LB4 are only valid with787

distinct priorities [93]. To overcome the latter limitation, Tanaka and Takii [93] propose an788

extension of LB3 and LB4, respectively called LB3e and LB4e, valid for duplicate priorities.789
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The idea is to consider the target items one by one, in a hypothetical layout where all790

other target items of the same priority and items above them are removed. Note that791

this can apply to LBN as well. Although LB4 is tighter than LB3, the latter is faster792

to compute. Quispe et al. [80] introduce two lower bounds LB-LIS and LB-PDB. LB-LIS793

creates a binary matrix that informs which blocking item remains blocking after being794

relocated to which stack. From this matrix, they compute a sequence of item priorities795

and find its longest increasing subsequence to deduce LS-LIS. The second lower bound,796

LS-PDB, exploits the idea of pattern databases from [64]. Their B&B algorithm was more797

efficient when using LB-LIS as a lower bound compared to LB3, LB4, and LB-PDB, even798

though LB4 is tighter. Bacci et al. [3, 4] reinterpret some of the previous lower bounds799

as solutions of the Generalized Minimum Blocking Problem (GMBIP) and deduce a new800

lower bound (named as UBALB). UBALB is obtained by solving a relaxed GMBIP with a801

polynomial-time algorithm. Note that LB1 ≤ LB2 ≤ LB3 ≤ LB4,UBALB. Experiments802

show that LB4 is not practical for large instances due to its exponential computational time.803

Whereas UBALB was marginally looser than LB4, it achieved short computational times.804

Zhang et al. [123] enhance LB4 (ELB4) by considering that items blocking the target item805

may affect the relocation of the next target items. Galle et al. [42], Zweers et al. [128] give806

lower bounds for stochastic variants of the BRP.807

6.2.2. Unrestricted BRP808

All the former lower bounds (except LB1) apply only for the restricted BRP. For the unre-809

stricted BRP, Forster and Bortfeldt [38] propose an extension (LB2u) increasing LB1 by one810

move when every blocking item remains blocking after being relocated. Tricoire et al. [105]811

introduce a generalization of LB2u that we call LB3u, observing that lower-level items may812

also have to remain blocking after a relocation. LB3u was more accurate than LB2u in certain813

cases but did not bring significant improvement in most of the cases. Tanaka and Mizuno [92]814

propose a lower bound (we call it LBNu) that exploits a similar idea to LB2u but also checks815

items above the target item. Lu et al. [72] review the previous lower bounds and reveal fun-816

damental connections between them. They derive a new lower bound (LB4u) that dominates817

all the previous ones. Without stack height limits, they observed that the optimality gap818

of LB4u was nearly twice less than the gap of the second-best lower bound, LBNu. Lower819

bounds for the pure BRP are summarized in Table 8. For the BRP with batch moves,820

Zhang et al. [125] give a lower bound extending [10]. da Silva Firmino et al. [85] propose a821

lower bound of the variant of the restricted BRP minimizing the crane travel distance.822

6.2.3. IP-based lower bounds for the BRP823

Finally, further lower bounds can be obtained by solving the LP relaxations of BRP-I824

[19], BRP-II* [32], BRP-II-A [117], BRP-III [78], BRP-m1, BRP-m2 [84], BRP-m3 [72],825

and CRP-I [40] models. Note that BRP-I, BRP-III, BRP-m1, BRP-m2 and BRP-m3 allow826

voluntary moves whereas BRP-II*, BRP-II-A and CRP-I forbid them. In [78], BRP-I was827

found tighter than BRP-III, however, took longer to compute. In [84], BRP-m1 obtained828

better linear relaxations than BRP-III and BRP-m2. In [40], CRP-I was not found as tight829

as LB1 and LB3 on average.830
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6.2.4. PreMarshalling Problem831

In the PMP, every misplaced item has to be relocated. Thus, a simple lower bound on832

the number of relocations (we call it LBL) is the number of misplaced items [66]. Observe833

that if all the stacks contain misplaced items, then we must first repair at least one stack to834

sort the storage area. By adding the minimum number of misplaced items over all stacks,835

we get LBZ [15, 124]. If relocating an item implies that an additional relocation is necessary,836

the move is called an indirect relocation. By including indirect relocations, Voß [109] further837

improves LBZ. To compute the lower bound LBBF, Bortfeldt and Forster [10] compute LBZ
838

and add a lower bound on the number of well-placed items that must become misplaced later.839

Tanaka and Tierney [94] introduce the lower bounds IBF0 and IBF1 to improve LBBF. IBF1
840

obtains better results by considering special cases when all or most of the stacks contain841

misplaced items. Tanaka et al. [95] extend IBF1 with three lower bounds IBF2, IBF3, and842

IBF4. IBF2 increases IBF1 by 1 in certain situations. In turn, IBF3 improves IBF2 when843

IBF2 = LBBF, by taking one more case into consideration. Furthermore, IBF4 improves844

IBF3 when the latter fails, in the same manner. The best performance was obtained with845

IBF4, closely followed by IBF3. IBF4 is used as a base for computing lower bounds for the846

PMP minimizing crane times [77]. Finally, other lower bounds can be obtained by solving847

the LP relaxation of the models presented in Section 3. The tighest LP-based lower bounds848

may be obtained by the models PMPm1 [84], IPS6 [76] and IPCT [77].849

6.3. Pruning850

In the PMP and the BRP, partial sequences of moves can be eliminated based on dom-851

inance properties. Expósito-Izquierdo et al. [33] avoid moves that reverse directly previous852

moves. Tierney et al. [102] and Tanaka and Mizuno [92] identify several types of dominance853

properties for the PMP and the BRP, respectively. The first one detects unrelated moves854

(i.e. not sharing any from or to stacks in common) that lead to the same layout. The second855

avoids transitive moves, i.e. several moves that can be performed in one single move. The856

third breaks the symmetry caused by multiple empty stacks. Another one, for the BRP, pre-857

vents items to be relocated just before their retrieval. Additionally, Tanaka and Tierney [94]858

propose a dominance rule for the PMP that breaks symmetry when items of the same priority859

are relocated. Jin and Yu [52] remark that two dominance rules in [94] cause overpruning.860

They fix this issue by applying a lexicographic dominance principle, which ensures con-861

sistency between dominance rules. Some of the former dominance rules for the PMP are862

generalized in [95] by introducing the concept of invariant stack. A stack is invariant to a863

given sequence of moves if its layout is the same before and after the latter sequence, and864

the topmost item before the sequence is not moved by the sequence. This allows breaking865

symmetry when moves can be indistinctly executed before and after a sequence. The authors866

also provide a rule using the upper and lower bounds of a node. Parreño-Torres et al. [77]867

give two dominance criteria for the PMP minimizing the crane time, one breaking symme-868

try, and one for transitive moves. Hottung et al. [47] use Deep Neural Networks (DNNs)869

to heuristically determine lower bounds for the PMP and determine which branches should870

be pruned. To do so, their DNNs are trained on more than 900,000 optimal solutions.871
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Zhang et al. [123] also use machine-learning for pruning branches, based on a random forest872

trained on known datasets.873

6.4. Abstraction method874

To reduce further the search space, Ku and Arthanari [64] introduce an abstraction875

method applicable to the B&B for the BRP. The idea is to replace the original state space876

with another (the abstract space) that is easier to search. They observed that equivalent877

layouts (e.g. having simply permutated stacks) appear repeatedly in different paths of the878

search tree. Using a database of abstract states, visited nodes are cached by projecting879

them to their corresponding abstract states. To do so, all empty stacks are removed and880

the remaining stacks are rearranged in ascending order of the priority in the lowest slot of881

the stack. This way, redundancy is easier to detect, thus recomputations can be avoided.882

This abstraction method is exploited in a bidirectional search proposed by [64]. Compared883

with [59], [19] and [118], results showed superior performance. The abstraction method has884

been further implemented in [42], and in [80] with new lower bounds, successfully showing885

significant improvements. In their method combining B&B and Dynamic Programming,886

Prandtstetter [79] also presented an approach to eliminate redundancy of layouts. They887

reorder the stacks as in [64] and run a heuristic to determine whether two layouts are equiv-888

alent.889

6.5. Miscellaneous890

Wang et al. [112] solve the PMP with a dummy stack using a Beam Search. Compu-891

tational times are significantly improved by performing compound moves instead of single892

moves, with a little cost of solution quality. Tierney and Voß [103] extend the ID-A∗ from893

[102] to solve the robust PMP, where unordered stackings are defined by a binary matrix894

instead of departure times. de Melo da Silva et al. [83] tackle the Block Retrieval Problem,895

a special case of the BRP in which only a subset of the items has to be retrieved, in any896

order. The primary goal is to minimize the number of relocations of the non-target items.897

As a second objective, the bi-objective BRTP considers the expected number of relocations898

for the next retrieval, given probabilities that non-target items will be retrieved before other899

items. The BRTP is solved by BS and B&B methods.900

Tanaka and Voß [96] propose a B&B for the BRP with a Stowage Plan (BRP-SP), de-901

scribed in Section 2. They formulate a precedence graph indicating whether an item can902

be retrieved before another. Three lower bounds inspired by the BRP are used: LB2c and903

LB2c4c are based on the number of cycles in the precedence graph, LBr is based on a relax-904

ation of the BRP-SP. It is observed that LB2c ≤ LB2c4c ≤ LBr. Even though LBr requires905

longer computational time than the other two, it was found more efficient in the B&B.906

6.6. Future directions907

According to [84], the B&B from [92] is the fastest exact method for the restricted BRP.908

This is mainly due to the fast lower bounds and many dominance rules applied during the909

search. Better lower bounds may be obtained for the unrestricted BRP [105]. No good exact910

method exists for the unrestricted BRP with duplicate priorities, according to [92]. To tackle911
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duplicate priorities, the dominance properties applied to distinct priorities should be mod-912

ified. Some work could also be done on finding better lower bounds. Tanaka and Voß [96]913

suggest developing faster lower bounds for the BRP-SP since the best-so-far lower bound914

becomes intractable for large instances. In particular, the lower bound LB5 from [3] has not915

been implemented in a B&B algorithm yet. Another idea is to incorporate the abstraction916

method from [64] to reduce the search space, or a local search algorithm such as in [34] to917

improve bounds.918

Hottung et al. [47], Zhang et al. [123] suggest that Deep Learning is a promising ap-919

proach for various stacking problems. The approach in [123] may be extended for the920

unrestricted BRP and with duplicate priorities, for comparison with [92]. Moreover, some921

performance improvements could be achieved by Reinforcement Learning.922

Finally, there is room for developing Tree Search-based methods for variants of stacking923

problems. Tus et al. [106] propose to investigate A∗ or ID-A∗ for the 2D-PMP.924

7. Concluding Remarks925

In this paper, we have investigated the literature on solution methods for solving Block926

Relocation and PreMarshalling Problems. We distinguished and summarized four categories927

of methods, and determined which stacking problems they cover. We also suggest directions928

for future research in each category.929

Integer programming formulations are still a promising direction. Existing improvements930

and preprocessing steps for the BRP could be exploited for other problems such as the PMP.931

We observe that few constraint programming and column generation approaches have been932

implemented and compared for solving large instances. Another direction is to incorporate933

uncertainty in these models.934

Nowadays, heuristics and metaheuristics perform well on small and medium instances.935

However, on large instances, state-of-the-art methods are still far from optimal solutions936

for problems such as the BRP. Using a post-processing phase such as a local search has937

been shown very efficient on the BRP. Existing methods can also be extended to cover more938

realistic constraints or different objective functions.939

Besides, developing faster and/or tighter lower bounds for tree search-based methods are940

believed to be suitable for practical industrial applications. Machine learning techniques941

such as deep learning are promising for complex applications.942

Finally, many ideas and methods mentioned in this survey exploit the inherent structure943

of stacking problems. Therefore, they could be applied or adapted to a wider range of944

stacking problems, such as loading problems and simultaneous loading/unloading problems.945
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