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Abstract

An object tracking sensor network (OTSN) is a wireless sensor network de-
signed to track moving objects in its sensing area. It is made of static sensors
deployed in a region for tracking moving targets. Usually, these sensors are
equipped of a sensing unit and a non-rechargeable battery. The investigated
mission involves a moving target with a known trajectory, such as a train on
a railway or a plane in an airline route. In order to save energy, the target
must be monitored by exactly one sensor at any time. In our context, the sen-
sors may be not accessible during the mission and the target can be subject
to earliness or tardiness. Therefore, our aim is to build a static schedule of
sensing activities that resists to these perturbations. A pseudo-polynomial
two-step algorithm is proposed. First, a discretization step processes the
input data, and a mathematical formulation of the scheduling problem is
proposed. Then, a dichotomy approach that solves a transportation problem
at every iteration is introduced; the very last step is addressed by solving a
linear program.
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1. Introduction

1.1. Context

Since wireless sensors are becoming more and more affordable, more
and more applications are now possible such as traffic control or battlefield
surveillance [1, 2]. Low-cost sensors are usually autonomous, equipped with
a sensing unit and a battery. Their typical purpose is to track targets in
their sensing range. They can be randomly deployed from an airplane or an
helicopter in places lacking monitoring infrastructures. Sensors relying on
technologies like drones and radars are suitable in military or humanitarian
assistance contexts, where the infrastructures are destroyed or non-existent.
In this paper, the investigated mission is to monitor a target with a known
trajectory, such as a train on a railway, a vehicle on a road or a plane in an
airline route. Since accessing sensors can be difficult in some environments,
we may have no control on them during the mission. Then, in order to save
battery lifetime, sensors can be switched off and waken up later. To minimize
the energy consumption, the target is monitored by only one sensor at a time.
Moreover, the target is subject to perturbations on its path, that may cause
advances and delays. Consequently, our challenge is to find a static schedule
of sensing activities, able to monitor the target at any time, without target
loss despite perturbation. A target loss happens when the target is outside
the range of any active sensor. A sensing activity is identified by a sensor,
a starting date and a duration, to be computed offline, before the mission.
During an activity, the corresponding sensor wakes up, collects information
about the target for a certain amount of time, and then gets back to sleep
status. Our aim is to find the most robust schedule, i.e. the one that resists
to the largest possible earliness and tardiness.

1.2. Related work

There are plenty of WSN protocols for target tracking proposed in the
literature, designed to achieve one or more goals. Usually, these protocols are
dedicated to the optimization or management of different criteria. We present
below a non-exhaustive list of the criteria addressed by those protocols:

• Energy consumption: this is one of the most critical aspects since the
sensors generally have a non-rechargeable battery. For exemple, the
framework designed in [3] configures min-cost convoy trees using dy-
namic programming in order to save energy. Many protocols that focus
on this aspect are based on LEACH [4, 5] or HEED [6].
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• Tracking precision: can be achieved by selecting more sensors or by
predicting the target location. A good precision technique can help
deciding which sensors to wake up and make a better use of the energy.
[7] and [8] propose protocols based on prediction.

• Scalability : a WSN protocol should scale to different network sizes since
a dense network can significantly increase the communication cost.
Scalable protocols typically use cluster-based or distributed approaches
instead of centralized ones. The authors in [9] focus particularly on this
aspect.

• Fault tolerance: target tracking may fail due to deficiencies or environ-
mental events. This aspect has witnessed a growing interest recently
[10–14].

For a more exhaustive review on the criteria and the WSN protocols, the
reader is referred to [15]. A classification of target tracking algorithms from
the security point of view is proposed in [14]. The problem investigated
in this paper is related to track continuity. However, while WSN protocols
generally assume that the target trajectory is random, our approach is based
on a known trajectory. It could also be combined with a trajectory prediction
method as in [16], to be adapted to targets following a random trajectory, by
periodically sending the prediction results as an input of our method. This
procedure is also suggested by Demigha et al. [17].

Only a few of these protocols are currently implemented using optimiza-
tion techniques. The survey by Naderan et al. [15] states that only one
protocol, designed by Lee et al. [18] and later extended by Yeong-Sung et al.
[19], is effectively using optimization techniques. This protocol configures an
object tracking tree using a Lagrangian relaxation-based heuristic algorithm
based on a 0/1 linear formulation. Their problem only handles communi-
cation mission and is frequency-based, i.e. frequencies of target movements
from a sensor to another are supposed to be known.

In [20], the problem is to optimize the tradeoff between tracking perfor-
mance and energy consumption. A scheduling problem is stated as a partially
observable Markov decision process. The decision is to choose the set of sen-
sors to activate at each time slot.

A distributed sensor activation algorithm DSA2 that relies on binary sen-
sors is designed in [21]. The algorithm activates the sensors according to
probabilities to detect targets. A robustness study is provided by changing
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parameters, such as the maximum velocity of the targets, the sensing range
or the sensor density.

One of the most studied WSN problems in the field of optimization is the
network lifetime maximization. Assuming that the targets are static, the aim
is to select and schedule a sequence of subsets of sensors, in order to maximize
the time during which all the targets are covered. Many variants of this prob-
lem have been investigated, such as MNLB (Maximizing Network Lifetime
under Bandwidth constraints) and MCBB (Minimizing Coverage Breach un-
der Bandwidth constraints), solved using heuristics [22] and further using
column generation [23]. Column generation is also a flagship technique to
solve network lifetime maximization problems. Carrabs et al. [24] handle
heterogeneous networks and speed up the column generation using a genetic
algorithm. Castaño et al. [25] take into account communication and multi-
roles sensors. To solve the pricing problem, they propose two approaches:
constraint programming and Branch-and-Cut based on Benders’ decompo-
sition. Singh and Rossi [26] study some ways to schedule groups of active
sensors after obtaining an optimal solution and propose a greedy heuristic
and a genetic algorithm.

When the energy consumption of a sensor is variable, i.e. proportional to
the number of monitored targets, the network lifetime maximization problem
becomes polynomially solvable. Liu et al. [27] provide a continous linear
formulation under this assumption.

In most of the research papers on WSNs, the notion of robustness is
reduced to survivability, i.e. the ability to resist to unexpected failures such
as enemy attacks or sensor deficiencies [28–30]. This paper focuses on the
ability of a sensor schedule to resist to target behavior perturbations, in order
to reduce the risk of target loss. A prediction scheme proposed in [31] also
aims at maintaining track continuity in ground battlefield surveillance, but
supposes that the targets can move on and off a road.

Our previous study [32] proposes an exact approach to solve the minimiza-
tion of energy consumption and the network lifetime maximization problems,
whereas this paper addresses robustness issue of this problem.

Initial
instance

Discretization
Scheduling

problem
instance

Scheduling
problem

Schedule

Figure 1: Overview of the steps of the method
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For the sake of readability, the problem investigated in this paper is intro-
duced step by step. Section 2 presents a preliminary step, called discretiza-
tion, to transform the input data into a scheduling problem instance. Such a
transformation is necessary to introduce the definition of stability radius, i.e.
the measure of robustness, in Section 3. A diagram summarizes the different
steps in Figure 1. In Section 4, some upper bounds on the stability radius are
provided. Sections 5 and 6 respectively describe the proposed approach to
solve the problem and the results of its implementation. Section 7 concludes
the paper.

2. Preliminary concepts

2.1. Definitions

A set of m sensors I = {1, . . . ,m} is randomly deployed in a two-
dimensional region in order to monitor a single moving target. The positions
of the sensors are known and static. Each sensor is able to monitor the target
under its sensing range (disc of radius R). The action of monitoring is called
a sensing activity. An activity consumes energy from sensor i, therefore the
total activity duration cannot exceed its battery lifetime Ei, for all i ∈ I.

Without loss of generality, the planned target position is supposed to be
exactly known at any time t ∈ [0, H] where H is the monitoring horizon and
defined by a continuous two-dimensional vector function T (t).

T : t 7→ (x, y) where t ∈ [0, H], (x, y) ∈ R2

Table 1 describes the initial input data of the problem.

I Set of sensors {1, . . . ,m}
(xi, yi) Position of sensor i, (xi, yi) ∈ R2

R Radius of the sensing disc of the sensors
Ei Battery lifetime of sensor i
H Time horizon
T (t) Trajectory of the target for all t ∈ [0, H]

Table 1: Initial problem input

The goal of the problem is to find a robust schedule of sensing activities
in order to avoid target loss. The requirements are the following:

• The target must be covered at any time in [0, H].
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• The target must be covered by exactly one sensor at a time.

Geometric data undergo a preprocessing called discretization before stat-
ing scheduling problem as a combinatorial optimization problem. The notion
of robustness used in this problem is presented in Section 3.

2.2. Discretization

First, the monitored space is partitioned into zones called faces. Since the
sensing area of each sensor is assumed to be a disk of radius R, the monitored
area can be seen as a planar graph [33, 34] (Figure 2). The vertices are the
intersections between the boundaries of sensors’ disks. The edges connect
vertices along the boundaries. The different surfaces bounded by the edges
are the faces. In fact, all the points inside a given face are covered by the
same set of sensors, and the number of faces is at most m(m−1)+2, as shown
in [33]. We define a face by a unique set of covering sensors. For example, in
Figure 2, the geometric faces 7 and 7′ are covered by the same set of sensors
{s2}, so they are considered as only one face numbered 7. So, multiple faces
that have exactly the same set of candidate sensors are considered the same.

s1

s2

s3

1

2
3 4 5

6

7

7′

Figure 2: A planar graph based on 3 sen-
sors with 7 faces

s1

s2

s3

{s1}{s1, s2} {s1, s2, s3} {s1, s3}{s1}
t1 t2 t3 t4 t5 t6

Figure 3: Sets of candidate sensors along
the target trajectory

Let F be the set of all faces and F̂ ⊆ F be the subset of faces in which
the target is moving. The target can be monitored by any candidate sensor
covering the face where it is located. Hence, the target trajectory can be
seen as a sequence (f1, f2, . . . , fp) ∈ F̂ p of the traversed faces. When the
target leaves a face and enters into another one, the set of candidate sensors
changes (Figure 3).
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A tick, denoted by tk, is a date of transition from a face fi to fi+1 and
a time window the period between two consecutive ticks. The ticks are ob-
tained by computing the intersections between the trajectory and the bound-
aries of the faces. Thus, the actual target trajectory shape is no longer needed
since the time windows and the faces are sufficient to track the target. We
denote by K = {1, . . . , p} the set of time windows, tk the date of the kth

tick, and S(k) ⊆ I the set of candidate sensors able to monitor the target
during time window k, i.e. for all t in the range [tk, tk+1]. The duration of
time window k is denoted by ∆k and defined by tk+1 − tk. Outside [0, H],
there is no restriction and no tracking requirement. Therefore, before t1 and
after tp+1, the set of candidate sensors is I, i.e. S(0) = S(p + 1) = I. Such
a convention will be convenient in the sequel, because it avoids handling the
ticks t1 and tp+1 as particular cases.

The ticks are partitioned in two classes: the entering and the leaving
ticks. The moment when the target enters the sensing area of a sensor is
called an entering tick. Whereas if it leaves a sensing area, it is a leaving
tick. Consequently, tick tk is an entering tick if S(k − 1) ⊂ S(k), and a
leaving tick if S(k) ⊂ S(k − 1). Whenever the target enters a sensing area
and simultaneously leaves another one, two distinct ticks, one leaving and
one entering, are associated to the same date. This case can happen when
the target passes through the intersection of two sensing area boundaries. It
can be seen in Figure 3 that t2, t3 and t6 are entering ticks (they are shown
as opening square brackets in Figure 4), whereas t1, t4 and t5 are leaving
ticks (shown as closing square brackets). t1 is considered as a leaving tick,
since by convention S(0) = I, then S(1) ⊂ S(0). On the other hand, t6 is an
entering tick, because S(p+ 1) = I and S(p) ⊂ S(p+ 1).

These definitions allow to introduce availability intervals. A sensor is said
to be available at time t if the target is expected to be inside its sensing range.
So, an availability interval of a sensor is a period of time during which the
sensor is continuously able to monitor the target. Such an interval typically
begins with an entering tick, and ends with a leaving tick, except for those
intervals that start at time t1 or end at time tp+1. Since we cannot select more
than one sensor at a time, a sensor cannot be selected outside its availability
intervals, since its selection would cause a target loss. Figure 4 shows the
availability intervals of the sensors for the instance of Figure 3. In general, a
sensor may be associated to more than a single availability interval.
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t1 t2 t3 t4 t5 t6

s1

s2

s3

Figure 4: Availability intervals for the instance of Fig. 3

3. Scheduling problem

3.1. Notation
The aim of the scheduling problem is to build a schedule S, composed

by a set of sensing activities, denoted by A. Each activity a ∈ A consists in
activating a given sensor i at time sa during da units of time. A schedule S
is feasible if:

• All the time horizon [0, H] is covered by activites without overlap.

• Each sensor is activated only inside its availability intervals.

• Each sensor is not used more than its capacity.

I Set of sensors {1, . . . ,m}
Ei Battery lifetime of the sensor i ∈ I
K Set of time windows {1, . . . , p}
tk Starting time of time window k ∈ K
∆k Duration of time window k ∈ K
S(k) Set of candidate sensors covering the target during the time

window k, i.e. between the ticks tk and tk+1, k ∈ K

Table 2: Scheduling problem input

Table 2 summarizes the input for the scheduling problem.
The notion of robustness is very popular in optimization, and in particular

in scheduling [35]. But since this notion is very rich and may have different
meanings according to the problem and the context, it is introduced in details
in Section 3.2.

The purpose of the scheduling problem is to find a schedule that remains
feasible despite target earliness or tardiness. In order to achieve this goal, the
notion of robustness used in this work is introduced in the next section. Then,
two upper bounds on the measure of robustness are proposed in Section 4.
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3.2. Robustness definition

We assume that the target cannot move outside its path, like a train
on a railway. However, the arrival dates at given positions are subject to
uncertainty. A tick tk is the expected arrival date at the position T (tk). In
other words, at time tk, the target is supposed to be at the boundary of
two faces, denoted by fk−1 and fk. Face fk−1 is covered by the sensors in
S(k − 1) and fk is covered by S(k). If the target arrives ρ units of time late
in T (tk), then it leaves later fk−1. Therefore, to avoid target loss, a sensor of
S(k−1)∩S(k) should be active during the interval [tk, tk+ρ]. Symmetrically,
if the target is early in T (tk) by ρ units of time, then it should be monitored
by a sensor of S(k − 1) ∩ S(k) during the interval [tk − ρ, tk]. Consequently,
in order to cope with both earliness and tardiness, sensors in S(k− 1)∩S(k)
should be selected to cover the target during the interval [tk − ρ, tk + ρ].

Earliness can also occur at the beginning of the mission. If the target
appears at time t1−ρ, then the schedule should begin also at the same date.
By symmetry, the schedule should end later than tp+1 to anticipate possible
lateness occuring at the end of the mission.

s1 s2

t1 t2 t3 t4
0 2 4 6

s1

s2

Figure 5: A simple instance with 2 sensors

−1 0 2 4 6 7

s1 s2

0 2 4 6

{s1} {s1, s2} {s2}

−1 2 3 7

Figure 6: Example of non-robust schedule

−1 0 2 4 6 7

s1 s2

0 2 4 6

{s1} {s1, s2} {s2}

−1 2 3 7

Figure 7: Example of robust schedule
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Earliness and tardiness may create discrepancies between expected and
actual ticks. Given a schedule S, the aim in this section is to compute the
greatest variation of the ticks tk that do not compromize the feasibility of
S. This measure, denoted by ρ and introduced in [36, 37], is called stability
radius. A schedule with a stability radius of ρ is able to cover the target
whenever it is early or late of at most ρ units of time.

In our context, the stability radius is defined by the minimal duration
between the instant a sensor is active and the instant it is no longer a can-
didate. Thus, it is limited by the duration between the boundaries of an
activity and the boundaries of its corresponding availability interval.

Figure 5 presents a simple example of the problem with 2 sensors. Here,
we assume that the battery lifetime of the sensors is unlimited. Figures 6 and
7 show two valid schedules, respectively denoted by S1 and S2, submitted to a
perturbated scenario (shown as the second timeline on each figure). Schedule
S1 activates sensor s1 in time interval [0, 4] and sensor s2 in time interval
[4, 6], whereas S2 activates sensor s1 in [−1, 3] and sensor s2 in [3, 7]. Both
schedules are valid since they are able to cover the target if no perturbation
occurs.

In our perturbated scenario, the target appears earlier and disappears
1 unit of time after the expected completion time of the mission. We can
see that schedule S1 is not designed to resist to these perturbations since it
begins at t = 0 and ends at t = H. Moreover, the target arrives 1 unit of time
early in T (t3). Since s1 does not cover the face after t3, S1 fails to cover the
target in this case. However, schedule S2 resists to all of these perturbations
and has a stability radius of 1, whereas S1 has a stability radius of 0.

In this paper, our aim is to find a schedule that maximizes the stabil-
ity radius for the target tracking problem. The description of the solution
approach is structured as follows. Section 4 provides upper bounds for the
scheduling problem. Section 5 describes the decision version of the schedul-
ing problem based on a Transportation Problem. Finally, the upper bounds
are used for a dichotomy on the decision problem described in Section 5.1.

4. Bounds

We propose two kinds of upper bounds on the stability radius that will
be used in the solution approach in Section 5. They rely on the idea of
expanding the length of the time windows until inevitable exhaustion of the
sensors. The first one is based on the distances between pairs of time windows
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using the set of candidate sensors they have in common. The second one is
computed by considering the energy limitation of the candidate sensors.

4.1. Upper bound based on ticks distances

The following upper bound, denoted by UB1, is obtained by computing
the closest distance between time windows having no candidate sensors in
common.

UB1 = min
k,k′∈K

{
1

2
(tk′ − tk+1) | k < k′ and S(k) ∩ S(k′) = ∅

}
If two time windows k and k′ have no candidate sensors in common, then
there exists no sensor able to cover simultaneously the two faces correspond-
ing to these time windows. From our requirements, only one sensor can be
active at a time. At each instant, either we select a sensor in S(k), or we se-
lect one in S(k′), and only one of the two faces can be covered. Therefore, the
expansion of the length of both time windows is limited by the half-distance
between them (Figure 8).

t1 t2 t3 t4

s1

s2

Figure 8: Illustration of UB1

This upper bound can be generalized for all pairs of time windows. In fact,
when two time windows have some candidate sensors in common, the stability
radius is limited by the sum of their battery lifetime. The generalization of
UB1, denoted by UB1′, relies on this idea.

UB1′ = min
k,k′∈K

1

2

 ∑
i∈S(k)∩S(k′)

Ei + tk′ − tk+1

 | k < k′


When two time windows k and k′ have no candidate sensors in common, then∑

i∈S(k)∩S(k′)Ei = 0, and UB1′ reduces to UB1.
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4.2. Upper bound based on energy limitation

Each time window is associated a face, and also a set of candidate sensors.
Then, the extra duration of stay of the target inside the face cannot exceed
the sum of the battery lifetimes of its candidate sensors. This idea is used to
design the upper bound UB2.

UB2 = min
k∈K

1

2

∑
i∈S(k)

Ei − (tk+1 − tk)


The generalization of this upper bound is based on the fact that a given

face may be associated with different time windows. This situation typically
arises when the target reenters a face. It is recalled that F̂ is the set of
traversed faces. For each face f ∈ F̂ , let Sf be the set of sensors that cover
it and ρf the upper bound on the stability radius that will be deduced from
this face. Initially, ρf is set to zero. First, we compute Kf = {k ∈ K |
S(k) ⊆ Sf} as the set of all the time windows that are completely dependent
on the sensors of Sf . We compute the vector D as the distance between two
consecutive time windows in Kf , hence D has |Kf |−1 elements. We suppose
that the elements of D are sorted by increasing order. All the sensors of Sf
are used to cover |Kf | time windows, which means that the stability radius
is at most the time during which the sensors can be used after covering all
the time windows of Kf divided by 2 |Kf |.

In order to illustrate this idea, let us consider that a face is visited three
times by the target. Time windows k, k′ and k′′ are the elements of Kf .
These time windows are shown in Figure 9. We also assume that two sensors
s1 and s2 cover f , with E1 = 5 and E2 = 5. It can be seen in the figure
that covering three time windows require 1 + 2 + 1 = 4 units of time. The
residual energy of s1 and s2 is then E1 + E2 − 4 = 6. Then, since |Kf | = 3,
the stability radius is necessarily less than ρf = 6

2|Kf | = 1.

2 3 6 8 13 141 4 5 9 12 15

k k′ k′′

D1 D2

Figure 9: Illustration of UB2′, where ρf = 1 and
∑

i∈Sf

Ei = 10
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However, this figure shows that if the energy of the sensors in |Sf | gets
larger, then the stability radius can reach 1.5. In that case, the time windows
k and k′ become adjacent, i.e. if ρf ≥ 1.5, then it is no longer necessary to
increase it in 6 directions, as only 4 directions are necessary. Figure 10
illustrates the case where

∑
i∈Sf

Ei = 15.

2 3 6 8 13 140 4.5 10 11 16

k k′ k′′

D2

Figure 10: Illustration of UB2′, where ρf = 2 and
∑

i∈Sf
Ei = 15

Finally, if E1 + E2 is large enough, ρf becomes larger than 2.5, and the
time windows k′ and k′′ become adjacent. It is no longer necessary to increase
it in 4 directions, as only 2 directions are necessary (Figure 11).

2 3 6 8 13 14−1 4.5 10.5 17

k k′ k′′

Figure 11: Illustration of UB2′, where ρf = 3 and
∑

i∈Sf

Ei = 18

Consequently, the calculation of ρf is performed stepwise. Let k1 < k2 <
· · · < k|Kf | be the time windows in Kf . For all q ∈ {1, . . . , |Kf |−1}, we define

Dkq = tkq+1 − tkq as the distance between two consecutive time windows in
Kf . Then, those |Kf |− 1 distances are re-indexed by increasing order (D1 ≤
· · · ≤ D|Kf |−1). Algorithm 1 returns the tightest upper bound on the stability

radius. For each face, it computes r, the residual energy after monitoring the
time windows in Kf . Whenever the residual energy to monitor the target
between the closest time windows is sufficiently large, these time windows are
merged by removing the corresponding distance minD. Then, the number of
directions of expansion 2(|D|+1) is also decreased. The algorithm stops when
the maximal expansion at each time window extremity, r

2(|D|+1)
, is less than

or equal to the half-distance between the closest consecutive time windows
minD.
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Algorithm 1 Compute UB2′

ρmin ←∞
for all f ∈ F̂ do

r ←
∑
i∈Sf

Ei −
∑
k∈Kf

(tk+1 − tk)

while |D| > 0 and r
2(|D|+1)

> minD
2

do
r ← r −minD
D ← D \ {minD}

end while
ρmin ← min

{
ρmin,

r
2(|D|+1)

}
end for
return ρmin

Lemma 1. UB1′ and UB2′ have no performance guarantee on the stability
radius ρ.

Proof. There exists an instance for which ρ = 0, UB1′ > 0 and UB2′ > 0.
Such an instance is given in the appendix.

5. Solution approach

In this section, we introduce the decision problem associated to the schedul-
ing problem. Afterwards, we exploit the decision problem to solve efficiently
the scheduling problem.

5.1. Decision problem

Let ρ be an arbitrary positive value. The decision problem consists in
answering the question: Does there exist a feasible schedule such that its
stability radius is at least ρ? This problem can be reduced to the well-studied
Transportation Problem (TP), that can be solved in polynomial time using
a method based on the Kuhn’s combinatorial algorithm for the assignment
problem [38].

First of all, we consider the case where ρ = 0. An instance I0 of TP is
built as follows: sensors are the suppliers having capacity Ei and time win-
dows are the customers having demand ∆k. The decision variables are xik,
the amount of time during which sensor i monitors the target during time
window k. To obtain a balanced transportation problem, the total demand
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should be equal to the total supply. We set ∆p+1 =
∑

i∈I Ei −
∑

k∈K ∆k,
and the variables xip+1 are the residual capacities of the sensors. The trans-
portation costs cik are the penalties on the use of infeasible activities, i.e.
activities based on sensor i to cover some time window k such that i 6∈ S(k).
For all i ∈ I, cip+1 = 0.

∀i ∈ I, k ∈ K : cik =

{
0 if i ∈ S(k)
1 if i 6∈ S(k)

Then the objective is to minimize the total time during which infeasible
activities are used to cover the target. The problem can be stated as follows:

min
∑
i∈I

∑
k∈K∪{p+1}

cikxik (1)

∑
k∈K∪{p+1}

xik = Ei ∀i ∈ I (2)

∑
i∈I

xik = ∆k ∀k ∈ K ∪ {p+ 1} (3)

xik ≥ 0 ∀i ∈ I, k ∈ K ∪ {p+ 1} (4)

Constraint (2) ensures that the total activity of a sensor does not exceed
its battery lifetime. Constraint (3) imposes that the target is monitored
during all the time windows.

First of all, there exists a feasible schedule if and only if the optimal
objective value is zero. The transportation problem provides also a feasible
schedule. It can be built using the xik variables. These variables act as
budgets spent for sensing activities. For each strictly positive value of xik,
we create an activity involving the sensor i during the time window k, of
duration xik. Then, in each time window, the activities are sequenced in an
arbitrary order, without overlap.

In order to decide the existence of a feasible schedule for a given ρ > 0,
we generate a new instance Iρ. The value of ρ must be such that any feasible
solution for Iρ provides a feasible solution for the original problem such that
the stability radius is greater than or equal to ρ. Since the stability radius
is bounded by the durations between activities and the boundaries of their
corresponding availability intervals, the procedure consists in restricting the
availability intervals of the sensors to forbid any activity that would cause
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Algorithm 2 BuildInstance

Require: I0 = ({tk}, {S(k)}): the original instance
Require: ρ: the guaranteed stability radius of Iρ
procedure BuildInstance(I0,ρ)

∀k ∈ K, σk ←
{
−1 if tk is a leaving tick
1 if tk is an entering tick

∀k ∈ K ∪ {p+ 1}, t′k ← tk
∀k ∈ K, S ′(k)← S(k)
δ ← ρ
while δ > 0 do

∆min ← min

{
δ, mink∈K

t′k+1 − t′k
2

| σk+1 − σk < 0

}
. Find the minimal half-distance between two opposite ticks

for all k ∈ K ∪ {p+ 1} do
t′k ← t′k + σ ×∆min . Translate all the ticks

end for
for all k ∈ K do

. Swap leaving and entering ticks meeting at the same date
if σk+1 − σk < 0 and t′k+1 − t′k ≤ 0 then

σk ← −σk
σk+1 ← −σk+1

S ′(k)← S ′(k − 1) ∩ S ′(k + 1)
end if

end for
δ ← δ −∆min

end while
return Iρ = ({t′k}, {S ′(k)}) . New instance Iρ with t′k and S ′(k)

end procedure
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the stability radius to be less that ρ. In Section 2.2, we considered two classes
of ticks: entering and leaving. The entering ticks are translated by ρ and the
leaving ones by −ρ. As soon as an entering tick tk and a leaving tick tk+1

meet together, their position in the ordered list of ticks are exchanged and
the set of candidate sensors S(k) is updated as follows:

S(k)← S(k − 1) ∩ S(k + 1)

The procedure is summarized in Algorithm 2. If there exists k ∈ K such
that S(k) = ∅ and ∆k > 0, then the current instance is infeasible.

Figure 12 shows an example with 3 sensors, where the target trajectory is
represented by the straight line oriented from left to right. The instance I1.5
can be built in two steps. First, the entering ticks are moved by +1 and the
leaving ticks by −1 (Figure 13). At this point, ticks t3 and t4 meet together.
Consequently, they are swapped, and the sensor s3 is not a candidate anymore
between these ticks. This is characterized in Figure 14 by the 2 open square
brackets connections to s3. Note that this is not anymore an interval but
rather a forbidden interval for s3. Next, the same procedure is applied by
moving the ticks by 0.5. Hence, the schedule shown in Figure 14 achieves a
stability radius of 1.5.

5.2. Scheduling problem

The scheduling problem is to find a schedule that maximizes the stability
radius ρ. Algorithm 3 addresses this problem with dichotomy. It starts by
testing the existence of a feasible schedule for ρ = 0 and ρ = UB, where
UB = min{UB1′,UB2′}. If there exists a feasible schedule for ρ = UB,
then the problem is solved. If there does not exist a feasible schedule for
ρ = 0, then the problem is infeasible. Otherwise, our algorithm computes an
ordered list D containing all the positive distances tk′ − tk < UB where tk
is an entering tick and tk′ is a leaving tick. The elements of D are indexed
by increasing order. Then, the algorithm finds the maximal value D` for
which there exists a feasible schedule with a stability radius of ρ ≥ D` using
the dichotomy method. At each iteration, the decision problem is solved
using the transportation problem formulation (SolveTP). The bounds on ρ,
D`min

and D`max , are updated according to the fact that the transportation
problem has a zero optimal value or not. Then, since ρ ∈ [D`min

,D`max), a
linear program is solved to build an optimal solution. The variables of the
linear program are the following:
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Figure 12: Instance I0
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Figure 13: Instance I1

t′′1 t′′2 t′′3 t′′5 t′′60 H

t′′4

s1

s2

s3

Figure 14: Instance I1.5

δ ≥ 0 Improvement of ρ over D`min

xik ≥ 0 Amout of sensing activity allocated to the sensor i ∈ I for the
time window k ∈ K

The objective is to maximize the improvement δ. The LP model is de-
scribed by:

max δ (5)∑
k∈K|i∈S(k)

xik ≤ Ei ∀i ∈ I (6)

∑
i∈S(k)

xik = ∆k + (σk+1 − σk)δ ∀k ∈ K (7)

δ ≥ 0 (8)

xik ≥ 0 ∀k ∈ K, i ∈ S(k) (9)

Where σk =

{
1 if tk is an entering tick
−1 if tk is a leaving tick

.

Constraint (6) limits the total activity duration of a sensor by its battery
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lifetime. Constraint (7) allocates a sufficient amount of sensing time between
the candidate sensors to monitor the target during each time window.

Once the solution is obtained, the schedule is built as shown in Section
5.1. In the final schedule, the total amount of energy spent by the sensors
is H + 2ρ, since it begins ρ units of time before t1 and ends ρ units of time
after tp+1. In the sequel, we define 3 lemmas that state the finiteness of ρ
and the complexity status of the problem.

Lemma 2. ρ is finite if and only if
⋂
k∈K S(k) = ∅ or ∀i ∈

⋂
k∈K S(k), Ei

is finite.

Proof. First of all, if
⋂
k∈K S(k) = ∅, then the target crosses at least two faces

with no sensors in common. Therefore, there exists no set of sensors able to
cover the whole trajectory and ρ must be finite. If for all i in ∩k∈KS(k), Ei is

finite, then the stability radius is at most UB1′ ≤ 1

2

(∑
i∈∩k∈KS(k)Ei +H

)
.

Conversely, if ρ is finite, then any sensor able to cover the whole trajectory,
if such a sensor exists, has a finite capacity.

Lemma 3. The scheduling problem is solvable in a pseudo-polynomial num-
ber of operations, in O(mp(m+ p) log p).

Proof. The discretization algorithm, running in polynomial time, generates
p time windows. The existence of a feasible schedule, stated as a Trans-
portation Problem in Section 5.1, can be reduced to an equivalent Max Flow
Problem by building a graph with vertices associated to sensors and time
windows, and by comparing the flow value to the time horizon. The Max
Flow Problem is solvable in O(|V ||E|) [39], where |V | = O(m + p) is the
number of vertices and |E| = O(mp) is the number of arcs. Therefore, since
the dichotomy processes a logarithmic number of iterations, the complexity
is in O(mp(m+ p) log p).

An example in which the number of ticks is as large as desired is shown
in the appendix.

Lemma 4. If the trajectory is a piecewise linear curve composed of q straight
segments, then the problem is solvable in a polynomial number of operations,
in O(q2m3 log(qm)).
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Algorithm 3 StabilityRadius
UB ← ComputeUpperBound
if UB < 0 then

return −1 . Infeasible problem
end if
z ← SolveTP(IUB) . Does a schedule such that ρ = UB exist?
if z = 0 then

return ρ = UB
end if
z ← SolveTP(I0) . Does a feasible schedule exist?
if z > 0 then

return −1 . Infeasible problem
end if
D ← {tk′ − tk ∈ [0, UB) | tk is entering and tk′ is leaving}
`min ← 1
`max ← |D|
while `max − `min > 0 do

`←
⌊
`max−`min

2

⌋
ρ← D`
z ← SolveTP(Iρ)
if z = 0 then

`min ← `
else

`max ← `
end if

end while
ρ← D`min

δ ← SolveLP(Iρ)
ρ← ρ+ δ
return ρ
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Control point 1 2 3 4 5

Date 0 2 5 8 11
Coordinates (−7,−2) (−4,−3) (0,−2) (−1, 2) (−3, 4)

Table 3: Dates and coordinates of control points defining the piecewise linear trajectory

Tick t1 t2 t3 t4 t5 t6

Date 0 1.026 3.195 7.216 9.685 11
Status∗ L E E L L E

Entering face f1 f2 f3 f4 f1 -

*E = entering tick, L = leaving tick

Table 4: Result of the discretization algorithm

Proof. The proof is based on the geometry resulting in the intersection of
segments and discs. Each segment can cross at most twice each sensors
circle. Consequently, the number of ticks is at most 2qm, so the number
of time windows is at most p = 2qm − 1. The decision problem, stated as
an equivalent Max Flow Problem, can be solved in O(|V ||E|) [39], where
|V | = O(qm) is the number of vertices and |E| = O(qm2) is the number of
arcs. Since the dichotomy processes a logarithmic number of iterations, the
complexity is in O(q2m3 log(qm)).

5.3. Example

Let us process a simple example similar to the instance shown on Figure 3.
There are 3 sensors {s1, s2, s3} having respective coordinates (−3, 0), (0,−5),
(3, 0). Each sensor has a sensing radius R = 6 and an initial capacity Ei = 15.
The target trajectory is a piecewise linear curve that passes through 5 control
points described in Table 3. The speed of the target is uniform along each
segment, but is subject to change after passing a control point.

Because the trajectory is composed of segments, the discretization step is
performed by solving quadratic equations representing intersections between
segments and circles.

The target passes through the faces f1 = {s1}, f2 = {s1, s2}, f3 =
{s1, s2, s3} and f4 = {s1, s3}. The set of ticks and the sequence of faces
obtained are given in the Table 4. The two upper bounds UB1′ and UB2′
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ρ ∆1 ∆2 ∆3 ∆4 ∆5

0 1.026 2.169 4.021 2.469 1.315
2.010 5.047 2.169 0 2.469 5.336
3.095 7.216 0 2.169 0.300 7.505
3.165 7.216 0.140 2.169 0.160 7.644

Table 5: Values of ∆k according to the value of ρ

are computed as described in Section 4.

UB1′ = min {7.5, 8.584, 10.595, 11.829, 15, 9.51, 10.745, 15, 8.734, 7.5} = 7.5

UB2′ = min {3.165, 9.5, 17, 9.5} = 3.165

Thus, an upper bound on the stability radius is UB = 3.165. The first
step is to test whether there exists a feasible instance such that ρ = UB.
Solving the transportation problem associated to the instance I3.165 gives a
strictly positive value, so the optimal value of ρ is guaranteed to be strictly
less than 3.165.

The second step is to test the feasibility for ρ = 0. Since I0 is feasible,
the dichotomy algorithm has to be applied. The ordered set of distances
t′k−tk < UB is D = {0, 2.01, 3.095}. Table 5 gives the values of ∆k associated
to the different instances according to the value of ρ.

−2.779 0 3.8064.436 5.975 6.905 11 13.779

s1 s2 s1 s3 s1

Figure 15: Gantt chart of the solution schedule

The dichotomy processes for the values ρ = 2.01 that gives a feasible
instance, and ρ = 3.095 that gives an infeasible instance. Then, the optimal
value of ρ belongs to the interval [2.01, 3.095). Finally, the optimal objective
value of the LP defined by equations (5)-(9) is δ = 0.769. Thus, the optimal
value of ρ is 2.779. The obtained schedule is shown in Figure 15. We observe
that the stability radius is limited specifically by the capacity of the sensor s1
which is totally consumed. The total energy spent by the sensors is H+2ρ =
16.558 units of energy.
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m p Ei = 12 Ei = 16 Ei = 20

100 374.26 9/2/30/9 44/0/4/2 46/1/2/1
200 629.68 3/1/26/20 32/2/11/5 45/1/2/2
500 1466.12 0/0/6/44 12/0/26/12 38/0/10/2
1000 2708.54 0/0/8/42 11/0/23/16 29/0/18/3

Table 6: Repartition between instances (# UB1/# UB2/#∅/#Inf) according to the num-
ber of sensors and the initial sensor capacity

6. Computational results

The proposed approach is tested on a set of 200 randomly generated
instances. The instance generator randomly generates a target path lying
inside a (

√
10m ×

√
10m) square region. This path is a piecewise linear

curve composed of 9 segments joining 10 randomly chosen control points.
To each control point is associated a date that is the date of passage of
the target. The dates are uniformly dispatched along the time horizon. As
the control points are completely random, the target can come back in the
same face several times. Then, it randomly dispatches a set of m sensors
(m ∈ {100, 200, 500, 1000}) such that each sensor is able to cover a part of
the trajectory. Any part of the trajectory can also be covered by several
sensors. The fixed parameters are R = 10 (sensing radius) and H = 10m
(time horizon). Several values of initial sensor capacity (Ei ∈ {12, 16, 20})
have been tested for each instance.

The implementation has been coded in C++ and executed on an Xeon
processor W3520 (2.67 GHz × 8) with 8 GBytes RAM under Linux (Ubuntu
14.04). The linear program defined by equations (5) to (9) is solved using
IBM CPLEX 12.6.1. The decision problem is solved with the LEMON library
version 1.3.1 from COIN-OR [40], after being reformulated as a maximum
flow problem.

Table 6 presents results for the 4 classes of 50 instances grouped by num-
ber of sensors (m ∈ {100, 200, 500, 1000}). The second column p is the aver-
age number of ticks. Each line contains a quadruplet # UB1/# UB2/#∅/#Inf
where # UB1 (respectively # UB2) is the number of instances for which UB1′

(respectively UB2′) is reached, n∅ is the number of instances for which none of
the upper bounds is reached, and #Inf is the number of infeasible instances.

The upper bound UB1′ dominates UB2′ in 93.4% of the feasible instances.
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m min{UB1′,UB2′} ∅

100 0.086 s 0.481 s
200 0.215 s 1.206 s
500 1.311 s 8.652 s
1000 5.252 s 33.55 s

Table 7: Average computation times of feasible instances when UB1′ or UB2′ is met,
versus when none of these bounds is met

UB2′ seems to be more efficient when the initial capacity of the sensors
is critical, i.e. the capacity is just enough to ensure the feasibility of the
instance. Thus, the initial capacity of the sensors is a significant factor in
the computation time.

When one of the upper bounds is reached, the calculation of the upper
bounds represents for 45.8% of the total computation time in average. The
generation of the instances Iρ in Algorithm 3 runs for 37.6% of the time
on average. For all other feasible instances, the calculation of the upper
bounds is only 7.58% of the total computational time. The generation of the
instances Iρ represents 62.3% of the total time, whereas solving the TP is
about 22.6% of the time.

As expected, the problem difficulty increases with the instance size (where
the instance size can be measured in terms of number of sensors, and also in
terms of number of ticks). However, it can be seen in Table 6 that the initial
energy also plays a major role in the problem. Indeed, for low initial energy,
most of the instances are infeasible. This is particularly noticeable for large
instances, where the target is moving in a large area. By constrast, when
energy is abundant, most of the instances are feasible, and more specifically,
UB1′ is reached in most cases (in particular for small instances). Again, this
is due to the fact that when sensors have high initial energy, the stability
radius is rarely limited by energy (as in UB2′), but mostly set by the minimum
distance between two time windows having no (or few) candidate sensors in
common. Intermediate cases (Ei = 16) are more interesting, since for a lot
of instances, no bound is reached, even if feasible instances are most of the
time feasible. In this case, the dichotomy approach of Algorithm 3 is actually
used. So these results show that the problem is generally easy to solve for
extreme cases (low of high sensor initial energy), and the gap between these
two extreme cases is rather narrow.
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m p Ei CPU0 CPUρ Avg. ρ

100 374.26
12 0.076 s 0.321 s 25.9
16 0.074 s 0.112 s 34.8
20 0.074 s 0.106 s 35.5

200 629.68
12 0.183 s 0.717 s 25.1
16 0.184 s 0.432 s 45.9
20 0.184 s 0.248 s 49.2

500 1466.12
12 1.106 s 1.804 s 26.3
16 1.159 s 5.342 s 64.3
20 1.138 s 2.754 s 78.4

1000 2708.54
12 4.311 s 10.47 s 48.5
16 4.359 s 17.13 s 86.3
20 4.276 s 14.70 s 106.2

Table 8: Average computation times versus the number of sensors and the initial sensor
capacity

Table 7 shows the average CPU time when UB1′ or UB2′ is met (second
column) and when none of these bounds is met (third column). Feasible
instances only are taken into account for building Table 7. This table shows
the efficiency of the upper bounds in solving the problem. The feasible in-
stances for which UB1′ or UB2′ is optimal are in average about 5 to 7 times
faster to solve than the rest of the feasible instances. This is due to the fact
that whenever one of the upper bounds is reached, Algorithm 3 stops before
the dichotomy step.

Table 8 gives the average computation times and the average optimal
values of ρ according to the number of sensors and the initial battery capacity.
The column CPU0 contains the average time to reach the beginning of the
loop of the dichotomy, i.e., the moment when the first feasible solution with
ρ = 0 is found. The column CPUρ displays the average time to obtain an
optimal solution.

A solution with a zero stability radius, such as the one found before
the beginning of the dichotomy (see Table 8) consumes less energy than a
maximum stability radius solution. This is due to the fact that the sensors
have to be active ρ units of time before the target expected starting time,
and ρ units of time after the arrival time. So the extra energy cost of a
solution having a stability radius of ρ is equal to 2ρ. In our instances, the
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extra energy cost represents 4.1% of the time horizon in average, and 16.1%
in the worst case.

The computational effort required to obtain an optimal solution highly
depends on the instance. When the instance is infeasible, or the upper bound
is reached by the optimal solution, CPUρ is equal to CPU0, because the
algorithm stops before the dichotomy. Otherwise, CPUρ can be significantly
larger because of the dichotomy. The value for CPUρ shown in Table 8
accounts for situations that lie in between these two extreme scenarios.

7. Conclusions and future lines

In this paper, we investigated a robustness problem of target tracking
using wireless sensor networks. To the best of our knowledge, this problem
has not been previously studied in the literature. The method proposed
finds a robust sensor activity schedule in two steps. The discretization step
transforms the input data into a scheduling problem instance. Then a di-
chotomy algorithm processes the instance in order to maximize its stability
radius. By this approach, we prove that the overall problem can be solved
in a pseudo-polynomial number of iterations, and a polynomial number of
iterations if the target trajectory is a piecewise linear curve. Computational
experiments show that the approach is scalable and solves problem instances
involving up to 1000 sensors in less than 15 seconds on average. The two
proposed upper bounds, especially UB1′, contribute to significatively speed
up the method, as they are often reached and avoid to run the dichotomy
algorithm. We have also shown the impact of sensors initial energy capacity
on the computational effort required by the approach.

As a perspective of our work, another alternative to this problem could be
to select sensors in order to save sensor capacity in a particular area. Thus,
considering an enemy target that wishes to escape monitoring or to exhaust
the sensors in a specific area, a problem variant could be to compute how
long and where to send a target in order to compromise monitoring. In this
paper, we have not considered the problem of routing collected data to a base
station using multi-hop communication. This first study establishes simple
and efficient upper bounds, that could be more difficult when communication
issues are taken into account. However, the proposed framework can easily
be extended to multiple target tracking without communication. Finally,
we could consider that the spatial trajectory of the targets is subject to
uncertainty. This hypothesis may lead to consider problem variants where the
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time horizon is shorter, in order to cover the area in which the target is likely
to be found, according to its speed and maneuverability. The robustness-
based approach could also be complemented by a reactive approach, in order
to cope with uncertainty on long trajectories.
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Appendix A. Instance with no guarantee on UB1 and UB2

An instance for which ρ = 0 and min{UB1′,UB2′} > 0 can be built as
follows. The instance is composed of 3 sensors: s1, s2 and s3. Sensor s1
is available during the interval [0, 5], s2 during the interval [2, 10] and s3
during [7, 12]. The initial capacity of each sensor is Ei = 4. The instance is
illustrated in Figure A.16.

s1 s2 s3

0 2 5 7 10 12

s1
s2
s3

Figure A.16: Instance for which ρ = 0 and min{UB1′,UB2′} > 0

There exists a feasible schedule such that ρ = 0. The latter enables s1
during [0, 4], s2 during [4, 8] and s3 during [8, 12]. The sum of the sensor
capacities is 12, equal to the time horizon. Therefore, the stability radius
cannot be larger than zero, and the proposed schedule is optimal.

The upper bound UB1′ is limited by the distance between the closest pair
of time windows having no sensor in common, i.e. the time windows 1 and
3, or 3 and 5. Then UB1′ = 3

2
= 1.5.

The total available capacity in the face composed of s1 and s2 (reached
during the time window 2) is 8. As the candidate sensors of the time windows
1 and 3 are included in the set of candidate sensors of the time window
2, we assume that s1 and s2 will be used at least 7 units of time. Then
the remaining capacity is 1 to extend the time windows, in 2 directions.
Therefore, UB2′ = 1

2
= 0.5.
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Appendix B. Instance solvable in a pseudo-polynomial number of
iterations

The instance composed of 2 sensors in Figure B.17 shows that the problem
is solvable in a pseudo-polynomial number of operations.

Figure B.17: Instance

The target trajectory is modeled as a sinusoid that moves along the
boundary of the sensing area of one of the sensors. Since the period of
the sinusoid can be as short as desired, the number of intersections with
the boundary (also the number of time windows) can be as large as desired.
Therefore, the number of iterations of the algorithm strongly depends on the
period of the sinusoid.
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