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Abstract

The Multi-Objective Uncapacitated Facility Location Problem has been well solved by Gandibleux et al.
[11] with an exact two-step method. This paper presents a direct extension of this algorithm for the Multi-
Objective Single Source Capacitated Facility Location. The first step (paving) consists on a branch and
bound on facility opening variables, which produces assignment subproblems. The power of this step is to
eliminate entire subproblems by dominance tests. The second step (generation) solves each subproblem and
merges all the nondominated solutions. Subproblems are solved using a label setting algorithm. Moreover,
we provide an efficient branch and bound algorithm to solve single objective version of our subproblems.
The computation times are compared to SCIP MIP solver.
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1. Introduction

Decision making is one of the most important things encountered in a life. As Matthias Ehrgott says,
Life is about decisions [6]. There are so many situations in the real world where a decision has to be taken
with conflicting criteria. Multi-Objective Combinatorial Optimization is a field of Operations Research
which copes with these kind of problems in a scientific way. In particular, we will speak about Facility
Location Problems.

The Facility Location Problems (FLP) involve locating or positioning a number of facilities in order
to minimize their fixed opening costs and delivering costs by serving required demands. For example, we
need to locate some warehouses which have building costs. Then we have to assign known customers to
warehouses, the criteria can be the profit and travel distance between them. A good survey shows the state
of the art in Multi Objective Facility Location Problems [7]. The Uncapacitated Facility Location Problem
(UFLP) has been well studied in the literature and its multi-objective version is also well solved [11, 9].
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The Capacitated Facility Location Problem (CFLP) is a generalization of the UFLP. The objective is
still to minimize opening costs and delivering costs, but, in contrast, the customers have demand amounts
and facilities have a capacity limit. In this paper, we will consider the case in which the customers can be
delivered by only one facility, also called Single Source Capacitated Facility Location (SSCFLP).

Let us describe an integer programming model for the multi-objective SSCFLP. Let I = {1, . . . ,m} be
a set of customers and J = {1, . . . , n} be a set of facilities. Facility opening costs ( f k

j ), delivery costs (ck
i j),

customer demands (di) and facility capacities (q j) are given.

The objectives (1) are to minimize the total costs including facility opening costs and delivery costs.

(SSCFLP)

min z =

m∑
i=1

n∑
j=1

ck
i jxi j +

n∑
j=1

f k
j y j ∀k ∈ {1, . . . , p} (1)

s.t.
n∑

j=1

xi j = 1 ∀i ∈ I (2)

xi j ≤ y j ∀i ∈ I,∀ j ∈ J (3)
m∑

i=1

dixi j ≤ q jy j ∀ j ∈ J (4)

xi j ∈ {0, 1} ∀i ∈ I,∀ j ∈ J (5)

y j ∈ {0, 1} ∀ j ∈ J,∀ j ∈ J (6)

The constraints (2) force all the demands to be covered by the facilities. The constraints (3) ensure a
used facility will take opening costs into account. The constraints (4) make the facilities limited by their
capacity. Moreover, (5) make sure the deliveries are not split and each customer is delivered by only one
facility.

The method [11] runs in two steps named paving and generation. The idea is to decompose the problem
into subproblems. In each subproblem, all y j variables are already fixed and we only look at xi j variables.
During the paving, a branch & bound procedure is performed on y j variables to filter subproblems which
have no chance to contain nondominated solutions for the global problem. This produces a paving which
bounds the objective space into boxes. Next, the generation procedure finds all the nondominated solu-
tions in each remaining subproblem and merges them to keep only the nondominated points for the global
problem.

First, we will study the subproblems and provide a method to solve them in their single objective version.
Then, we will describe the paving and generation procedures more in details.

2. A theorical study of subproblems

In this section, we will consider the single objective version of the subproblems. In each subproblem,
the decision to open a facility or not has already been taken. The only variables remaining are them for
assigning customers to facilities. Subproblems are modeled using the following formulation.
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(SP)

min z =

m∑
i=1

n∑
j=1

ci jxi j (7)

s.t.
n∑

j=1

xi j = 1 ∀i ∈ I (8)

m∑
i=1

dixi j ≤ q j ∀ j ∈ J (9)

xi j ∈ {0, 1} ∀i ∈ I,∀ j ∈ J (10)

(SP) also models a Single-Source Transportation Problem (SSTP) [18] which is a special case of a Gen-
eralized Assignment Problem [19] in minimization (Min-GAP). Because of the combination of constraints
(8) and (9), (SP) can have no feasible solution.

2.1. NP-completeness

Let us denote byA the following problem.

A

Instance : Positive integers m > n ≥ 1, a vector of demands d = (d1, . . . , dm) ∈ Zm
+ and a vector

of capacities q = (q1, . . . , qn) ∈ Zn
+.

Question : Are there disjoint subsets I j ⊆ {1, . . . ,m},∀ j ∈ {1, . . . , n} such that

n⋃
j=1

I j = {1, . . . ,m} (11)∑
i∈I j

di ≤ q j,∀ j ∈ {1, . . . , n} (12)

Lemma 1 A is NP-complete.

Proof. Let us give a definition of the Partition problem.

Part.

Instance : A vector of positive integers d = (d1, . . . , dm) ∈ Zm
+

Question : Is there a subset I ⊆ Ω = {1, . . . ,m} such that∑
i∈I

di =
∑
k∈I

dk (13)

Reduction : From a Partition instance (d1, . . . , dm), we create aA instance by defining n = 2 capacities
: q1 = q2 = 1

2 Q with Q =
∑

i∈Ω di.
By contradiction, let us prove that

∑
i∈I1 di =

∑
k∈I2 dk iff the answer of A is Yes. Due to constraints (12),

if ever
∑

i∈I1 di <
Q
2 , then

∑
i∈I1 di +

∑
k∈I2 dk ≤

∑
i∈I1 di +

Q
2 < Q which contradicts

∑
i∈I1 di +

∑
k∈I2 dk =∑

i∈Ω di = Q.
Moreover, as we have I1 and I2 disjoint, I2 = I1. Thus,

∑
i∈I1 di =

∑
k∈I1

dk, which is equivalent to constraint
(13).
Our reduction makesA be the same problem as Partition, which has been proven NP-complete [14, 12, 13].

�
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Theorem 1 Single Source Transportation Problem is NP-hard.

Proof. Let M = {1, . . . ,m},N = {1, . . . , n}, (ci j ∈ Z+)M×N along with C ∈ Z+ be given. We add the
constraint ∑

i∈M

∑
i∈N

ci j ≤ C (14)

to problemA and denote the so-obtained problem by B. B is also the decision version of SSTP. By setting
ci j = C = 0,∀(i, j) ∈ M × N, B restricts to A, so B is NP-complete. So the optimization problem where
(14) is a minimization objective (with ci j set to the values of the SSTP instance) subject to the constraints
ofA is NP-hard. �

It is also obvious that SSCFLP and its multi-objective variant are NP-complete. In fact, SSTP is a
specialization of SSCFLP where the opening costs are all zero (all y j can be set to 1 without compromising
the objective). Let us analyze what causes the hardness of the problem.

When the knapsack constraints (9) are loose enough, i.e. ∀ j ∈ {1, . . . , n}, q j ≥
∑m

i=1 di, these constraints
can be ignored. It is also a semi-assignment problem, easily solvable in polynomial-time. In this case,
SSCFLP becomes a UFLP.

When the knapsack constraints (9) are the tightest they can, i.e.
∑n

j=1 q j =
∑m

i=1 di, then the problem to
decide whether a feasible solution exists is similar to an Exact Cover Problem, which is very hard to solve.
In fact, the thing that makes the problem difficult is essentially the tightness of the knapsack constraints (9).
Our experiments show that the tigher they are, the harder SSTP is.

We define the tightness coefficient as follows :

1 −

∑n
j=1 q j −

∑m
i=1 di∑n

j=1 q j
(15)

If this coefficient is near 1, the problem is considered potentially harder. In the opposite case, it is
much easier. Our conjecture is : the more this coefficient is near 0, the more the solution of the continuous
relaxation is similar to the optimal solution.

2.2. Modeling as a Transportation Problem

We can consider the contraints (8) as inequality constraints (≥), since an optimal solution of the follow-
ing linear program will never have more than one assignment per customer.

4



(SP′)

min z =

m∑
i=1

n∑
j=1

ci jxi j (16)

s.t.
n∑

j=1

xi j ≥ 1 ∀i ∈ I (17)

m∑
i=1

dixi j ≤ q j ∀ j ∈ J (18)

xi j ∈ {0, 1} ∀i ∈ I,∀ j ∈ J (19)

Theorem 2 If x∗ is optimal for (SP′) then
∑n

j=1 x∗i j = 1,∀i ∈ I.

Proof. Suppose x∗ is an optimal solution for (SP′) and x∗i j = 1 and x∗ik = 1 for at least one i ∈ {1, . . . ,m}
and j, k ∈ {1, . . . , n}, j , k. As x∗ already conforms to the knapsack constraints (18), we can remove one of
the items x∗i j or x∗ik without compromsing them. By setting x∗i j or x∗ik to zero, we keep a feasible solution and
reduce the costs in the objective function. Also we prove the first optimality assumption was wrong. �

By replacing xi j by yi j = dixi j, we obtain an equivalent formulation :

(SSTP)

min z =

m∑
i=1

n∑
j=1

ci j

di
yi j (20)

s.t.
n∑

j=1

yi j ≥ di ∀i ∈ I (21)

m∑
i=1

yi j ≤ q j ∀ j ∈ J (22)

yi j ∈ {0, di} ∀i ∈ I,∀ j ∈ J (23)

In fact, (SSTP) is a special case of the Hitchcock Problem [10] or Transportation Problem (TP) where
q j are the supplies and di the demands. This subproblem is single source because of the constraints (23)
that force each demand to be served by only one supply.

The model (SSTP) is also convenient because the Transportation Problem is well studied and very
fast algorithms are provided, in particular a primal-dual specialized simplex method [10, 20]. The primal-
dual method can also be used to compute the continuous relaxation as a lower bound. To have a correct
Transportation Problem, we have to balance the network. We add a dummy demand dm+1 with costs cm+1 j =

0 and consider the flows from this demand can be fractional.

2.3. Properties

Analyzing some properties about (SP) helps us to have a better understanding of the problem.

Theorem 3 If ∃(i, j) ∈ (I, J) such that di > q j, then setting xi j = 1 will never lead to a feasible solution.
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Proof. Contradiction : di > q j and xi j = 1 =⇒
∑m

k=1 dkxk j > q j. �

Theorem 4 If ∃ i ∈ I,∃! j ∈ J such that di ≤ q j, then setting xi j = 0 will never lead to a feasible solution.

Proof. Setting xi j = 0 will lead to the situation of the theorem 4 for each k ∈ J, k , j. �

Theorem 5 If m = n and ∀i ∈ I, ∀ j ∈ J,
q j

2
< di ≤ q j, then (SP) is equivalent to the Assignement Problem.

Proof. It consists on proving the knapsack constraints are equivalent to ∀ j ∈ J ,
∑n

i=1 xi j = 1.
Suppose ∃ j ∈ J ,

∑n
i=1 xi j > 1 then ∃i, k ∈ I, i , k such that xi j = 1 and xk j = 1.

Then di xi j + dk xk j = di + dk >
q j

2
+

q j

2
= q j. So the knapsack constraint is violated. The first

assumption is also wrong, so ∀ j ∈ J ,
∑n

i=1 xi j ≤ 1.
Now suppose ∃ j ∈ J ,

∑n
i=1 xi j = 0, then

∑n
j=1
∑n

i=1 xi j ≤ n − 1, which is infeasible because
∀i ∈ I ,

∑n
j=1 xi j = 1 and also

∑n
i=1
∑n

j=1 xi j = n. To conclude, we have proven ∀ j ∈ J ,
∑n

i=1 xi j = 1. �

2.4. Dual problem

Let us give the dual model of (SSTP) and an interpretation. Let ui and v j be the dual variables respec-
tively corresponding to the constraints (21) and (22).

(DSSTP)

max z =

m∑
i=1

diui +

n∑
j=1

q jv j (24)

s.t. ui + v j ≤
ci j

di
∀i ∈ I,∀ j ∈ J (25)

ui, v j ∈ R ∀i ∈ I,∀ j ∈ J (26)

We could imagine that an intermediate company is charged to manage the logistics. Its goal is to
maximize the profit (24). The company buys products to facilities and sells them to customers, respectively
with the unit prices v j (negative) and ui. The company has to decide the prices ui and v j to be cheaper to

involve them than to handle the transportation by ourselves (i.e. with a price of
ci j

di
) (25).

3. A branch and bound algorithm for SSTP

In order to solve SSTP in a more efficient way than a generic MIP solver, we describe a branch and
bound algorithm suitable for this subproblem. The main idea is to solve the problem with respect to the
knapsack constraints which are very tight in our instances.

3.1. Lower bound

Let us first describe the behaviour in each node. Our branch and bound is a very simple method which
lies on two bounds : a continuous and a Lagrangian relaxations. In each node, we first solve the continuous
relaxation using a primal-dual transportation algorithm [10, 20], which is a very fast specialization of the
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simplex algorithm. It also gives the optimal objective value zLP∗ and dual variables ui, which will serve to
compute the Lagrangian bound.

Let ui be the optimal dual variables of constraints (21) of the continuous version of (SSTP) and λi = diui

the Lagrangian multipliers. The Lagrangian relaxation model is given.

(LSPλ)

min zL =

m∑
i=1

n∑
j=1

ci jxi j +

m∑
i=1

λi(1 −
n∑

j=1

xi j) (27)

s.t.
m∑

i=1

dixi j ≤ q j ∀ j ∈ J (28)

xi j ∈ {0, 1} ∀i ∈ I,∀ j ∈ J (29)

This model can be decomposed into independent problems. It is also equivalent to solve a sequence of
knapsack problems.

(KPλj )

max zKP
j =

m∑
i=1

(λi − ci j)xi j (30)

s.t.
m∑

i=1

dixi j ≤ q j (31)

xi j ∈ {0, 1} ∀i ∈ I (32)

We solve each (KPλj ) using a simple best first search branch and bound. The Lagrangian lower bound is
obtained by the following formula.

zL∗ =

m∑
i=1

λi −

n∑
j=1

zKP∗
j

Let zP∗, zLP∗ and zL∗ be respectively the parent node’s bound, the continuous bound and the Lagrangian
bound. The lower bound of the current node is also :

z∗ = max
{

zP∗ , zLP∗ , zL∗
}

The situation in which both continuous and Lagrangian bounds are less than the parent’s bound can
occur. It occurs when the Lagrangian bound behaves well on the parent (greater than the continuous relax-
ation) but bad on the child. The Lagrangian relaxation can be very unstable because of the changes of the
multipliers at each computation. It is also convenient to take the parent node’s lower bound into account.

3.2. Branching strategy

Our branch and bound is a best first search, i.e. it selects the node with the best lower bound between
the candidates. The produced tree is binary as we branch on one boolean variable at a time.
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Let xi j be the optimal solution of (LSPλ), ui and v j be the optimal dual variables of respectively con-
straints (21) and (22) of continuous version of (SSTP). Let r j the residual capacity of the facility j, i.e. its
remaining capacity unassigned in the partial solution.

Denote S a pool of variables such that :

S =

(i, j) | xi j = 1 or
n∑

k=1

xik = 0


S is the set of variables xi j such that, in the previous solution, the assignment (i, j) has been chosen or

there is no chosen assignment for the customer i. This makes every variable potentially selectable as every
variable which is not in S in the current node can be selected in a further node. The variable chosen for
branching is the one in S which has the maximal Ψi j coefficient, computed as follows.

Ψi j =

ui − v j −
ci j

di

r j

Almost all the performance lies on this simple heuristic. In fact, modifying it may dramatically increase
the number of nodes. This heuristic fits the customers which involve high revenues and cheap costs in the

most filled facilities. In a case of equality, we take the variable for which
diui

ci j
is maximal.

3.3. Variable fixing

To restrict the choice of the variables during the branch and bound, one can fix some variables which
will never lead to an optimal solution.

Let r j the residual capacity of the facility j. It is obvious that, when di > r j , xi j can be set to 0.

Moreover, the primal-dual method for (SSTP) gives us the reduced costs ci j of yi j. Let yi j be an optimal
solution of the continuous relaxation of (SSTP). Let ci j the reduced cost of yi j and zUB an upper bound
for (SP). If z(yi j) + dici j > zUB then xi j can be fixed to 0 without any risk. Indeed, ci j is the unit cost of
incrementing yi j. As yi j = dixi j, we need to increment it di times to fix xi j to 1. So the cost of fixing xi j

from 0 to 1 is dici j.

The variables are fixed in a local scope. The fixing has only an effect in the current node and its children.

3.4. Initial upper bound

Before the beginning of the branch and bound, we try to create an initial feasible solution as an upper
bound. The following method is inspired from Vogel’s Approximation Method [18].

We denote mink
j {ci j} the k-th smallest element ci j in the row i. Let reg(i) = min2

j {ci j} − min1
j {ci j} be

the regret of the row i. In the case that for a customer i, there is only one available facility j, we define
reg(i) = ci j.
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Algorithm 1 Vogel’s Approximation Method for SSTP
Require: I a set of unassigned customers.
Ensure: An initial solution x if the method succeed.

1: procedure VAM
2: xi j ← 0 ,∀i ∈ I, ∀ j ∈ J
3: r j ← q j ,∀ j ∈ J
4: while I , ∅ do
5: i∗ ← argmaxi∈I reg(i) such that di∗ ≤ r j

6: if i∗ does not exist then
7: Failure
8: j∗ ← argmin j∈Ji∗ {ci∗ j} such that di∗ ≤ r j∗

9: if j∗ does not exist then
10: Failure
11: r j∗ ← r j∗ − di∗

12: I ← I \ {i∗}
13: xi∗ j∗ ← 1

This method can fail, so in this case, no upper bound is available. Usually, this method is useful only
for problems in which the knapsack constraints (18) are loose. In our case, the initial bound will fail in a
large majority of cases, because they are tight. But this procedure has a very negligible time comparing to
the saved effort when the method succed, because it finds a solution very close to the optimal.

3.5. Summary

We provide a simple best first search branch and bound procedure which relies on two different bounds.
The Lagrangian and the continuous relaxations complete each other by giving multipliers to the other and
giving an integer solution and/or a better lower bound. These two bounds are very fast to compute using
a primal-dual algorithm for the continuous relaxation and a simple branch and bound for the knapsacks.
A simple and efficient heuristic for choosing the variable and a fixing procedure are provided to reduce
significantly the number of nodes. We have presented an approximation method to find a good initial upper
bound in some cases.

4. A two-step method for multi-objective SSCFLP

4.1. Paving

The following method is based on the method in [11]. Probably the most natural way to solve this
problem is to branch on opening variables y j, in order to solve assignment subproblems later. We call this
branching step paving. The main idea of the paving is to split the objective space into boxes. So, a box is
a subproblem in which the opening facility variables are fixed to 0 or 1. These boxes are bounded by their
lexicographically optimal solutions. All the non-dominated solutions of the subproblem are contained in
the box.

With each box is associated an origin which is a point computed by accumulating the costs of opening
the fixed facilities. The bounds of a box are computed by finding the lexicographically optimal solutions of
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its subproblem. In the bi-objective case, consider x∗1 and x∗2 these lexicographically optimal solutions. This
means, when the horizontal axis is for z1, the coordinates of the box are (z1(origin) + z1(x∗1), z2(origin) +

z2(x∗1)) for the top-left corner and (z1(origin) + z1(x∗2), z2(origin) + z2(x∗2)) for the bottom-right corner.

z1

z2

Figure 1: A paving with two boxes (with their respective origin) and two objectives

During the paving step, we consider two list of boxes : a waiting listW and a list of computed boxes
C, i.e. boxes for which the lexicographically optimal solutions are known. During the whole algorithm, we
maintain S as the pool of non-dominated integer solutions. When we add a solution in S, we check whether
it is dominated by an other solution of S. In this case, the incoming solution is deleted. Otherwise, we
delete the solutions in S that are dominated by the incoming.

4.1.1. Expansion

A branch & bound on the boxes is performed, with a special branching rule called expansion. At
initialization, a fake box with no open facility is first expanded. At each expansion, several children are
created and added to the waiting listW, with respect to the following scheme. Let k be the greatest index of
the open facilities. We create n − k children with exactly one additional facility having a greater index than
k by flipping one of the trailing zeros. The facilities before k always stay untouched. This ensures each box
is unique during the procedure. The parent box is never deleted, unless it is dominated (see next sections).

1 0 1 0 0 0

k

1 0 1 1 0 0 1 0 1 0 1 0 1 0 1 0 0 1

1 0 1 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1

Figure 2: Expansion of a box and its children

To avoid some infeasible branches, children guaranteed to be infeasible in all cases are skipped. For
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that, we compute the potential capacity R, i.e. the sum of the capacities of the trailing facilities (i.e. that
have an index greater than the k of the child). We call the available capacity Q the sum of the capacities
of the open facilities. If the sum of available and potential capacities is strictly less than the total customer
demand, the child is not created and the expansion stops. At the end, a sorting procedure is run. For more
explainations, please see next sections.

Algorithm 2 Box expansion

Require: W a list of waiting boxes
Require: J a set of open facilities

1: procedure Expand(W, J)
2: k ← max{ j ∈ J}

3: D←
m∑

i=1

di . Total demand

4: Q←
k∑

j=1

y jq j . Available capacity

5: R←
n∑

j=k+1

q j . Potential capacity

6: j← k + 1
7: while j ≤ n and Q + R ≥ D do
8: W←W∪ (J ∪ { j}) . Add a child box (with j open) to the waiting list
9: R← R − q j . Update potential capacity

10: j← j + 1
11: Sort(W) . Sort the boxes by fronts of origins

To ensure the enumeration will not be exhaustive, several dominance tests are made for pruning. Dom-
inance tests are made by comparing a lower bound point or the ideal point of a box with the solutions in
S, the pool of non-dominated solutions. If such a point is dominated by a solution in S, the box can be
eliminated, because all the feasible points of the box are inside the dominance cone of the previous solution.
In other terms, S is an upper bound front of the final Pareto-front.

4.1.2. Dominance by origin

Dominance by origin was proposed for solving the Uncapacitated Facility Location [11, 3, 1]. Origin
is a very fast lower bound to compute, as it is only a sum, so it is always the first test performed. All
solutions of the subproblem are dominated by its origin. Therefore, by transitivity, solutions of the global
problem that dominate the origin of a box, dominate also every solution inside the latter. Moreover, child
subproblems will be dominated, because their origin is dominated by their parents’ origin. Indeed, opening
new facilities can only increase opening costs.

Origin is fast but not very efficient for our purpose. Only relying on the origin can run useless and very
slow exact bound computations. It is also convenient to find other lower bounds which approximate the
ideal point better.
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z1

z2

z1

z2

Figure 3: Dominance by origin or lower bound (exact bounds not computed yet)

4.1.3. Dominance by inherited lower bound

To speed up box elimination, we will use a inherited lower bound added to the origin. A lower bound
is said inherited if it works for a subproblem and all its children subproblems. The idea is to prune a box
and all its children.

A lower bound (LB0) convenient to compute is the integer solution of the subproblem in which we
consider all the facilities open. We compute it independently for all objectives. This value can be computed
once at initialization and added to the origin of each box. For that, we simply run our previous branch and
bound solver for each objective. Because all the facilities are included, the knapsack constraints are loose
and this makes the solving quite fast.

An other lower bound (LB1) to be checked is the solution of the continuous relaxation of the subproblem
(i.e. with single source constraints relaxed) in which we open all the trailing closed facilities. Because of
the expansion rule, which considers only the trailing facilities, even all the children will have objectives
greater than this bound. Instead of using a general simplex algorithm, we run our specialized primal-dual
transportation algorithm to compute this bound [10, 20]. The reason why we don’t take the integer solution
is the high computation time to get it for each box.

0 1 0 1 0 0

k

LB0 LB1

1 1 1 1 1 1 0 1 0 1 1 1

Figure 4: Open facilities in inherited lower bounds

We can skip the expansion of a box dominated by an inherited lower bound, because this kind of bound
can only increase in children boxes. (LB1) can be less than (LB0), due to the fact that (LB0) is from an
integer solution, while (LB1) is from a fractional solution. But (LB1) is much faster to compute than (LB0),
due to relaxation of the single source constraints which avoid to use a heavy branch & bound.
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4.1.4. Dominance by non-inherited lower bound

When previous dominance tests fail, the goal is to skip the expansive computation of the bounds of the
box. We compute this lower bound (LB2) using the continuous relaxation of the subproblem. This bound is
computed in the same way as (LB1) but here we do not touch at the closed facilities.

However, the children of the box cannot be pruned, because adding new facilities in children boxes can
decrease the value of this bound. Indeed, adding new facilities can add more profitable assignments.

4.1.5. Dominance by exact bounds

After computing the exact bounds of a box, the last dominance test is to check the whole box is inside
the dominance cone of one solution of the global problem. For that, we simply consider the ideal point of
the box, i.e. the point given by the best objective values of the lexicographically optimal solutions. Then,
we check if it is dominated by a solution in S. In this case, the box is also deleted.

z1

z2

z1

z2

Figure 5: Dominance by bounds

4.1.6. Sorting the pending boxes

We can observe that non-dominated boxes have often non-dominated origins, and that the ordering of
the pending boxes can influence the dominating rules. So, instead of using an unordered waiting list of
boxes, we sort them by Pareto-fronts as NSGA-II [4]. All the non-dominated origins are assigned the rank
1, the next non-dominated, the rank 2, and so on. So the boxes with a non-dominated origin will always
be treated in priority, in order to maximize the probability of pruning the next boxes. Instead of making
a random choice in the first front, we can sort it by increasing available capacity, because in spite of the
tightness of the subproblems, they are more likely to give good solutions for pruning. The sorting procedure
is called at each expansion, when boxes are added toW.

4.1.7. Sorting the computed boxes

In the same spririt as the pending boxes, we sort the computed boxes C, but by fronts of ideal points.
The boxes with non-dominated ideal points are more likely to compute non-dominated solutions for the
global problem. This sorting procedure is run only once and at the end of the paving, since no more boxes
will be added for the next step.
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4.1.8. Computing supported solutions

It is convenient to compute some exact supported solutions in advance for two reasons. It improves
the size of the dominated region which can prune boxes even more. And it speeds up the generation step
by making earlier dominated labels in a label setting algorithm. To compute them, we can use Aneja and
Nair’s dichotomic method [2] which is the first step of the bi-objective two-step method [6].

The deal is to make the generation step easier without making the paving step too long. Indeed, the
higher the number of computed solutions is, the less these computations are profitable, because newly
dominated regions are usually smaller. However, the number of supported solutions computed can be
naturally limited by checking dominance. Indeed, when all the points that are used for the weighted sum
coefficients are simultaneously dominated by a same point, the result will be a dominated point, because it
is "between" the initial points. The dominance check is performed by the function IsDominatedByUnique.

We use an iterative version of the algorithm instead of a recursive one by using a queue of jobs W.
So before adding a new tuple of points as a new job in W, we check that all points of the tuple are not
dominated by S. The number of computed jobs is limited by the parameter maxpoints.

Algorithm 3 Adapted Aneja and Nair (bi-objective)

Require: x1∗, x2∗ lexicographically optimal solutions of the box, resp. for objective 1 and 2.
Require: z : Z∗+ × Z∗+ → Z∗+ × Z∗+ the 2-objective function.
Require: maxpoints ∈ Z∗+ a parameter.

1: procedure DichotomicMethod
2: W← {(x1∗, x2∗)} . Waiting list of pairs of solutions
3: k ← 0 . Counter of computations
4: whileW , ∅ and k < maxpoints do
5: (x1, x2)← first pair of solutions inW
6: W←W \ {(x1, x2)}
7: λ1 ← z2(x1) − z2(x2)
8: λ2 ← z1(x2) − z1(x1)
9: x0 ← SolveWeightedSum(λ)

10: k ← k + 1
11: if λ1z1(x0) + λ2z2(x0) < λ1z1(x1) + λ2z2(x1) then
12: S ← S ∪ {x0}

13: if not IsDominatedByUnique(x0, x1,S) then
14: W←W∪ {(x1, x0)}
15: if not IsDominatedByUnique(x0, x2,S) then
16: W←W∪ {(x0, x2)}

4.1.9. Paving algorithm

The complete paving algorithm is given below.
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Algorithm 4 Paving
Ensure: C is a list of non-dominated boxes

1: procedure Paving
2: W← ∅ . Waiting list
3: C ← ∅ . Computed boxes

4: D←
m∑

i=1

di . Total demand

5: ComputeLB0() . LB for which all facilities are open (precomputed)
6: Expand(y = (0, . . . , 0)) . Expand the first (fake) box
7: whileW , ∅ do
8: B← first box inW
9: W←W \ {B}

10: if not DominatedByInheritedLB(B,S) then
11: Expand(B)
12: if AvailableCapacity(B) ≥ D and not DominatedByNonInheritedLB(B,S) then
13: ComputeExactBounds(B)
14: if IsFeasible(current) and not DominatedByExactBounds(B,S) then
15: S ← S ∪ ComputedSolutions(B) . Add new solutions to the pool
16: FilterDominatedBoxes(C,S) . New S can dominate previous boxes
17: C ← C ∪ {B} . B is added to the paving
18: Sort(C) . Sort the final paving by fronts of ideal points

4.2. Generation

When the paving is finished, we have a set of multi-objective SSTP subproblems to solve. The method
proposed for the UFLP [11, 3, 1] transforms the subproblems into Shortest Path Problems (SPP) and uses
Martins’ algorithm [15], an extension of the Dijkstra algorithm for the multi-objective case, to find all
efficient paths. We propose a direct extension of this method by transforming the subproblem into a Con-
strained Shortest Path Problem [5, 8].

First in a directed graph we create one vertex vi per customer i and a starting vertex v0. Between every
pair (vi−1, vi) of consecutive vertices, we create one edge (e j

i−1,i) per open facility j with the costs ck
i j, k ∈

{1, . . . , p}. This results in a directed acyclic graph in which every path between v0 and vm corresponds to a
unique combination of assignments. Also selecting the edge (e j

i−1,i) means the customer i is assigned to the
facility j.

v0 v1 v2 vi vm−1 vm

1 1 1

2 2 2

3 3 3

4 4 4

Figure 6: A graph associated to a subproblem with 4 open facilities

For our algorithm, we use a label setting principle. Each vertex has a list of labels, initially empty.
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For the UFLP, labels contained only partial objective values. To cope with capacity constraints, we have
to take into account the residual capacities of the open facilities. So in our algorithm, a label L contains
partial objective values (zL

k ), residual capacities (rL
j ) and the total residual capacity (RL) (i.e. sum of the

residual capacities). To write labels, the following notation will be used : [zL
1 , . . . , z

L
p|r

L
1 , . . . , r

L
n ].

We begin with the vertex v0 in which we put the first label [zorig
1 , . . . , zorig

p |r1, . . . , rn], with zorig
k the value

of the origin for the objective k and r j = q j the initial capacity of the open facility j. At each iteration
i ∈ {1, . . . ,m}, we focus on a vertex vi−1 and try to expand its labels to the vertex vi by passing through
each leaving edge. At each expansion through an edge (e j

i−1,i), the new label objectives are increased by
ck

i j, k ∈ {1, . . . , p} and the residual capacity of the facility j is decreased by di. Feasibility and dominance
criteria are always checked in order to eliminate a maximum number of labels. When arrived to the last
vertex vm, the labels are filtered by objective-dominance only. We also have in the last vertex all the non-
dominated solutions of the subproblem, to merge in a global list. The final global list is filtered to remove
dominated solutions that were non-dominated only in the scope of the subproblem.

(vi−1) (vi)

rL
1 rL

2 rL
3

zL
1 zL

2 10 12 8

zL
1 + c1

i1 zL
2 + c2

i1 2 12 8

zL
1 + c1

i2 zL
2 + c2

i2 10 4 8

zL
1 + c1

i3 zL
2 + c2

i3 10 12 0

(c1
i1, c

2
i1)

(c1
i2, c

2
i2)

(c1
i3, c

2
i3)

Figure 7: Expansion of a label from vi to vi+1, 3 open facilities, di = 8

4.2.1. Algorithms

The generation algorithm is a simple loop over boxes. A label setting is applied on each box. After a
box is processed by the generation, we may have some new non-dominated solutions which dominate other
boxes. FilterBoxes removes all newly dominated boxes according to the global non-dominated solution set
S in order to process less boxes. FilterSolutions removes all the dominated solutions.

Algorithm 5 Generation

Require: BoxList a set of non-dominated boxes, S a global set of non-dominated solutions
Ensure: S a complete set of non-dominated solutions

1: procedure Generation(BoxList,S)
2: for all B ∈ BoxList do
3: G ← BuildGraph(B)
4: S ← S ∪ LabelSetting(G)
5: FilterBoxes(BoxList,S)
6: S ← FilterSolutions(S)
7: return S
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Before applying the label setting, the graph associated to the subproblem is computed using Build-
Graph. It is possible to sort the nodes in order to measure the influence of the ordering. The recommended
ordering is by decreasing demand, because it leads to more infeasible labels earlier and less enumeration.
At this step, it is also recommended to precompute the values of total, minimal and maximal remaining
demands at each vertex.

Algorithm 6 Build graph

Require: B a non-dominated box, I a set of customers, JB the set of open facilities
Ensure: G a directed acyclic graph

1: procedure BuildGraph(B)
2: V ← {v0}

3: E ← ∅
4: I ← SortByDecreasingDemands(I)
5: for all i ∈ I do
6: V ← V ∪ {vi}

7: for all j ∈ JB do
8: E ← E ∪ {e j

i−1,i}

9: return G = (V, E)

The label setting (LabelSetting) performs from v0 to vm and tests each label on each leaving edge (e j
i−1,i).

The acceptance criteria of LabelExpansion are given below. When expanding a label L = [zL
1 , . . . , z

L
p|r

L
1 , . . . , r

L
n ]

through an edge (e j
i−1,i), the following operations are performed :

zL
k ← zL

k + ck
i j , ∀k ∈ {1, . . . , p}

rL
j ← rL

j − di

RL ← RL − di

Algorithm 7 Label Setting
Require: G a directed acyclic graph
Ensure: S a set of non-dominated solutions inside the box

1: procedure LabelSetting(G = (V, E))
2: L(v0)← {[zorigin

1 , . . . , zorigin
p |r1, . . . , rn]} . First label

3: for all vi ∈ V do
4: for all e j

i,i+1 ∈ E do
5: for all L ∈ L(vi) do
6: LabelExpansion(L, e j

i,i+1)

7: FilterLabels(L(vi+1))
8: S ← L(vm) . The last vertex contains all the final solutions
9: return S
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The FilterLabels procedure assumes the algorithm is implemented using a linear list. It removes all
the dominated labels. To avoid a huge number of dominance tests in a high-dimensional space, it is recom-
mended to use a quadtree [17, 16]. This structure divides the objective space into 2p parts on each node
(where p is the dimension of the space), and skips the dominance tests in regions where the stored points
are guaranteed to be non-dominated by new inserted points. In this case, the FilterLabels procedure is not
needed.

4.2.2. Label dominance criteria

One of the main problems of the capacitated context is that an objective-dominant label does not nec-
essarily lead to feasible solutions. The consequence is that a such a label cannot be deleted without taking
into account the residual capacities.

Let zL
k , (k ∈ {1 . . . p}) be the current objective values for the label L and rL

j ( j ∈ J) be its residual
capacities. The label dominance criteria are given by definition 1.

Definition 1. Let L1 and L2 be two given labels in the same list.
L1 dominates L2 if and only if :

zL1
k ≤ zL2

k , ∀k ∈ {1 . . . p} and rL1
j ≥ rL2

j , ∀ j ∈ J

with at least one strict inequality.

A label dominated according to the definition 1 will always expand dominated labels.

Using the non dominated front obtained by the paving and the previous boxes, we can delete even more
labels. The following definition 2 is very convenient because it does not need to take the residual capacities
into account. The labels dominated according to this criterion will always lead to dominated solutions.

Definition 2. Let L be a label and S a feasible solution obtained before.
S dominates L if and only if :

zS
k ≤ zL

k , ∀k ∈ {1 . . . p}

with at least one strict inequality.

The previous definitions are also extensible for lower bounds of zL (i.e. zS
k ≤ LB(zL

k )). We have chosen
to check the dominance by only using lower bounds. The lower bounds we have chosen are the continuous
relaxation and the previously described Lagrangian relaxation used for our branch and bound for SSTP.

4.2.3. Label infeasibility criteria

A label L is said infeasible if itself and its successors do not satisfy the capacity constraints. A list of
criteria is proposed in order to delete more labels.

Criterion 1 (Capacity violation) One of the capacity contraints is violated.

∃ j ∈ J , rL
j < 0

18



dmax j1 j2 j3 j4 j5

Figure 8: Residual capacities not able to cover the maximal demand

Criterion 2 (Max demand violation) The maximal demand dmax to be assigned cannot fit into an existing
facility.

∀ j ∈ J , rL
j < dmax

Definition 3 (Full facility). Let j be a facility, rL
j its residual capacity and dmin the minimal demand to

assign. The facility j is said full if and only if rL
j < dmin.

dmin j1 j2 j3 j4 j5

Figure 9: A full facility i.e. not fitting the minimal demand

When a facility is said full, its residual capacity can be set to zero, also reducing the total amount of
residual capacity. The operations are RL ← RL − rL

j and rL
j ← 0

Criterion 3 (Total demand violation) The total amount of residual capacity RL is not able to cover the
total unassigned demand Dvi .

RL < Dvi

Criterion 4 (P||Cmax bound) A lower bound of the P||Cmax associated problem is strictly greater than the
maximal residual capacity.

LB(P||Cmax) > rmaxL

The P||Cmax problem can be seen as a relaxation of the SSTP, as the capacity constraints are ignored and
the objective is not to reduce the costs but the makespan. For this purpose, we consider demands as tasks.
One task per facility is also added, with a duration of rmaxL − rL

j . Let IL be the set of unassigned customers.
Denote T the set of task durations and M the set of machines.

T =
{
di ∈ IL | di > 0

}
∪
{
rmaxL

− rL
j | r

maxL
− rL

j > 0 , j ∈ JB
}

M =
{
j ∈ JB | rL

j > 0
}

Let pi ∈ T the durations of the tasks. The linear program is given.
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min Cmax (33)∑
j∈M

xi j = 1, ∀pi ∈ T (34)∑
pi∈T

pixi j ≤ Cmax, ∀ j ∈ M (35)

xi j ∈ {0, 1}, ∀pi ∈ T,∀ j ∈ M (36)

j1 j2 j3 j4 j5

(a) SSTP problem

j1 j2 j3 j4 j5

(b) Its P||Cmax associated problem

Figure 10: A P||Cmax problem associated to SSTP

When pi are ordered by decreasing durations, the lower bound of Cmax can be computed as following :

Cmax ≥ max

p0 , pn−1 + pn ,
∑
i∈T

pi

n


If Cmax is greater than the maximal residual capacity, it means that the remaining demands cannot fit into

the available space of the facilities anymore without splitting them. This label is also considered infeasible.

4.2.4. Other label deletion criteria

Criterion 5 (Wasted facilities) The number of unused facilities is strictly greater than the number of re-
maining customers to assign.

When a label has more unused facilities than the number of remaining customers to assign, it means the
final solutions obtained will not use all the facilities. Such a solution is not interesting because it means that
an useless extra facility was open ; the resulting solutions could also be computed in an other box without
extra opening costs. This situation should never happen because of the tight knapsack constraints and more
customers than facilities in our problems, but may be interesting in the case the number of open facilities is
high.

4.2.5. Summary

The table 11 summarizes the different label deletion criteria we will use.
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Criterion Condition

Dominance (label) ∃L′, zL′
k ≤ zL

k , r
L′
j ≥ rL

j ,∀k ∈ {1 . . . p},∀ j ∈ J with at least one strict inequality

Dominance (solution) ∃S ∈ S, zS
k ≤ zL

k ,∀k ∈ {1 . . . p},∀ j ∈ J with at least one strict inequality

Capacity violation ∃ j ∈ J, rL
j < 0

Max demand violation ∀ j ∈ J, rL
j < dmax

Total demand violation RL < Dvi

P||Cmax bound LB(P||Cmax) > rmaxL

Figure 11: Table of the label deletion criteria

The capacity, max demand and total demand violations are classified as infeasibility criteria.

The algorithm for label expansion on an edge is given.

Algorithm 8 Label Expansion

Require: L a label to expand, e j
i,i+1 an edge

1: procedure LabelExpansion(L, e j
i,i+1)

2: if rL
j − di < 0 then . Capacity violation

3: return false
4: if rL

j − di < dmin and RL − rL
j < Dvi then . Total demand violation

5: return false . RL =
∑

j∈J rL
j

6: L′ ← L . Compute new label
7: ∀k ∈ {1, . . . , p} , zL′

k ← zL′
k + ck

i j

8: rL′
j ← rL′

j − di

9: RL′ ← RL′ − di

10: if rL′
j < dmin then . Full facility ?

11: RL′ ← RL′ − rL′
j

12: rL′
j ← 0

13: if rmaxL′ < dmax then . Max demand violation
14: return false
15: if LB(P||Cmax) > rmaxL′ then . P||Cmax bound
16: return false
17: if LB(zL

k ) dominated by any feasible solution S ∈ S then
18: return false
19: L(vi+1)← L(vi+1) ∪ {L′} . Accept the label
20: return true
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5. Experimental results

5.1. Machines

Two machines were used for the experiments, denoted byM1 andM2. Let us give the configurations.

Machine Processor Memory
M1 Intel(R) Xeon(R) CPU X5550 @ 2.67GHz x 8 24GB
M2 Intel(R) Core(TM) 2 Duo CPU E8500 @ 3.16GHz x 2 3GB

Figure 12: The machines used for the experiments

5.2. Data set

The tested instances are aggregation of single objective SSCFLP instances from Elena Fernandez’
website ( http://www-eio.upc.es/~elena/ ). From two instances px.txt and py.txt, we construct
Fx-y.txt by setting the first objective coefficients from px.txt and the second from py.txt. The de-
mands and capacities are taken from px.txt. We have taken instances in order to have measurable times
for our algorithm and our machines, with 20 customers and 10 facilities. Five arbitrary instances will be
more subject to experiments than the others : they are called "main" instances.

Main F1-2 F2-3 F3-4 F4-5 F5-6
Secondary F1-3 F1-5 F2-4 F2-6 F3-6

F1-4 F1-6 F2-5 F3-5 F4-6

Figure 13: Tested instances

5.3. Branch and bound for SSTP

We have made 10 runs on M2 on 278 SSTP problems taken from the obtained pavings of our main
instances. We consider the computations of the lexicographical solutions and compare the results between
our branch and bound method and SCIP. The detailed results are in the appendix.

We observe that our branch and bound is faster in 92.80% of cases. The average speedup factor is 5.46,
but there are in average 34% more nodes in our method than in SCIP. So our method computes more nodes
but each node is processed faster than in SCIP. Our method seems to be even faster than SCIP when the
instances are very difficult.

We also measured the times according to the tightness coefficient defined in (15). It shows that when
the tightness coefficient is greater, our algorithm is more likely to take more time to solve the instance, but
it is not always the case.
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Figure 14: Relation between solving time and tightness coefficient

5.4. Paving

First, we will measure the pertinence of using lower bounds. Then, we will see the influence of the
ordering of the waiting boxes.

5.4.1. Using lower bounds

For each instance, 100 runs on machineM2 have been done with and without lower bounds. We do not
pre-compute supported solution here and the box ordering by rank and increasing total capacity is applied.
As the lower bound computations are negligible comparing to the exact computations, the results show that
using lower bounds reduces the execution time and many boxes are removed before being computed.

Created boxes Computed boxes Non-dominated boxes
Instance Only origin Origin + LB Only origin Origin + LB

F1-2 208 185 60 17 10
F1-3 218 201 76 27 16
F1-4 217 194 62 14 12
F1-5 221 205 91 57 42
F1-6 228 221 105 68 54
F2-3 204 200 38 16 10
F2-4 201 197 26 9 6
F2-5 199 189 34 17 6
F2-6 207 207 61 44 33
F3-4 289 285 47 29 17
F3-5 278 272 43 18 8
F3-6 304 295 101 65 54
F4-5 434 420 63 25 20
F4-6 462 442 130 56 36
F5-6 214 201 87 53 37

Figure 15: Comparison of number of boxes between an execution with only origin and with lower bounds
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Computed solutions Time (s)
Instance Only origin Origin + LB Only origin Origin + LB

F1-2 120 34 14.9479 7.97823
F1-3 152 54 23.2523 16.4067
F1-4 124 28 20.3808 9.2525
F1-5 182 114 12.281 10.4534
F1-6 210 136 18.4341 16.8221
F2-3 76 32 10.2544 6.03555
F2-4 52 18 10.7403 5.33655
F2-5 68 34 20.996 9.03586
F2-6 122 88 10.4762 9.57405
F3-4 94 58 36.2442 22.0244
F3-5 86 36 25.3635 9.61901
F3-6 202 130 50.1329 43.7725
F4-5 126 50 5.47842 3.02635
F4-6 260 112 10.473 5.28885
F5-6 174 106 48.0936 36.774

Figure 16: Comparison of times between an execution with only origin and with lower bounds

5.4.2. Ordering of the pending boxes

The ordering of the pending boxes matters in the box elimination procedure. Indeed, if the worst boxes
are treated first, they will involve several bound computations that could be avoided by a dominance test
with a good box computed before. It also useful to define an ordering.

The following data compares the paving with no ordering and with front-ordering by origin and increas-
ing total capacity Q. We don’t compute any supported solution here. For each instance, 100 runs onM2
have been done and we have taken the average time.

Created boxes Computed boxes Non-dominated boxes
Instance No ordering By origin No ordering By origin

F1-2 206 185 32 17 10
F1-3 207 201 36 27 16
F1-4 209 194 24 14 12
F1-5 216 205 65 57 42
F1-6 222 221 71 68 54
F2-3 200 200 16 16 10
F2-4 199 197 11 9 6
F2-5 198 189 22 17 6
F2-6 207 207 44 44 33
F3-4 286 285 31 29 17
F3-5 274 272 21 18 8
F3-6 295 295 65 65 54
F4-5 430 420 39 25 20
F4-6 442 442 56 56 36
F5-6 202 201 56 53 37

Figure 17: Number of created, computed and non-dominated boxes according to the ordering

On these instances, in most cases there are strictly less boxes computed. The consequence is generally
a better or equivalent average time. The origin is a good indicator, but we may be able to do better in case
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Computed solutions Time (s)
Instance No ordering By origin No ordering By origin

F1-2 64 34 10.223 7.97823
F1-3 72 54 17.2818 16.4067
F1-4 48 28 10.0973 9.2525
F1-5 130 114 11.1162 10.4534
F1-6 142 136 16.605 16.8221
F2-3 32 32 6.16077 6.03555
F2-4 22 18 5.84697 5.33655
F2-5 44 34 13.4541 9.03586
F2-6 88 88 9.26711 9.57405
F3-4 62 58 22.6924 22.0244
F3-5 42 36 10.3465 9.61901
F3-6 130 130 42.824 43.7725
F4-5 78 50 4.46682 3.02635
F4-6 112 112 5.16381 5.28885
F5-6 112 106 38.9786 36.774

Figure 18: Number of computed solutions and time according to the ordering

the opening costs are low. Indeed, imagine all the opening costs are null, then the origin ordering does not
work anymore and every box may be computed. A solution to that might be to begin with a box with all the
facilities open and to expand by removing facilities instead of adding them. Because if the opening costs
are low comparing to delivering costs, it is likely that we would open almost all the facilities in the efficient
solutions. An other hint is to compute a lower bound at each expansion, so we could be able to take into
account the delivering costs directly in the ordering. The last proposal has a very negligible influence on
the results of our instances that have greater opening costs.

5.5. Generation

In the generation step, we will speak about the pertinence of the label deletion criteria. We will also
analyze the progress of the number of labels during the generation. And we will focus on the importance of
pre-computing supported points before the generation. Finally, we will compare our method with a generic
epsilon constraint.

Erratum : a very small change in the Adapted Aneja and Nair’s method has been made after the mea-
sures. It is about the dominance checks : instead of checking whether the points used for the weighted sum
were dominated by a same point, we checked whether the points were dominated by one or several points,
not necessarily unique. So the previous implementation may skip supported points in special cases during
the pre-computation. We think the following results are very close to the ones after the modification. It does
not alter the final result because all the supported points are found a second time during the generation step.

5.5.1. Label deletion criteria and number of supported points

Because of the important number of boxes, we study only one of them, in particular the first generated
box of the F1-2 instance. The following graphs give an idea of the typical behavior of our criteria. It
presents the percentage of labels deleted according to 3 groups of criteria. Label dominance by other labels
is not included. The y axis has been cutted for more visibility. We observe that the infeasibility criteria are
the most involved (more than 70%). The "Pm||Cmax" and the label dominance by S criteria occur later but
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remain less significant. The efficiency of the generation step also lies essentially on the infeasibility criteria,
because they don’t let some labels growing early.

Computing supported points before the generation makes the label dominance by S more occuring and
earlier. In fact, the supported points restrict the search space and this permits to remove labels earlier. The
increasing paving time due to computation of supported points is also compensated by a better computation
time during the generation step.
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Figure 19: Part of the criteria involved in the label deletion in F1-2(1101101110) with no computation of
supported points (y axis cutted)
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Figure 20: Part of the criteria involved in the label deletion in F1-2(1101101110) with computation of all
supported points (y axis cutted)
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We can observe that the number of labels is increasing until the middle, reaching a peak and decreasing
after. This is due to fact that almost all labels are potentially feasible at the beginning of the process. The
exponentially growing number of labels makes difficult to handle them. Even if we use a quadtree structure
to store them as we have done.

Iteration #labels Deleted by infeasibility Deleted by Pm||Cmax Deleted by domin. by S Elapsed time (s)

#0 7 0 0 0 0.00178
#1 43 6 0 0 0.011627
#2 222 79 0 0 0.057805
#3 1114 440 0 0 0.258304
#4 4383 2708 0 0 1.07586
#5 20766 9728 26 0 4.56381
#6 68475 54289 1472 3 20.456
#7 272292 191831 12423 140 82.3387
#8 680296 903662 64469 3138 355.809
#9 1035647 2580593 175795 24410 966.057

#10 2345762 4383348 293518 99523 1828.73
#11 3094552 10620218 902007 303787 3375.46
#12 2420455 15095700 1687309 479830 4820.16
#13 821398 12787414 1739571 454156 5283.08
#14 307825 4659950 540185 76929 5368.4
#15 108583 1753102 203779 45576 5386.06
#16 41713 624103 37399 19759 5391.04
#17 10223 252579 1736 4237 5392.32
#18 2419 59842 0 695 5392.56
#19 450 14514 0 0 5392.56

Figure 21: Execution of box F1-2(1101101110) with no pre-computed supported points (on machineM1),
showing the number of labels deleted per criterion

Iteration #labels Deleted by infeasibility Deleted by Pm||Cmax Deleted by domin. by S Elapsed time (s)

#0 7 0 0 0 0.001837
#1 43 6 0 0 0.011894
#2 222 79 0 0 0.058722
#3 1114 440 0 0 0.262486
#4 4383 2708 0 0 1.10654
#5 20700 9728 26 73 4.69763
#6 65514 54078 1467 4900 21.2845
#7 215869 181935 11701 47585 84.7399
#8 414842 704015 50481 229459 262.756
#9 498299 1546909 106220 454442 594.1
#10 600538 2117137 145197 611520 851.375
#11 563629 2719616 248578 532088 1100.54
#12 291977 2760494 339514 462274 1241.88
#13 61811 1568317 215893 169345 1264.14
#14 19328 358235 33764 17263 1266.9
#15 3059 109315 11704 10919 1267.56
#16 951 16993 943 2353 1267.68
#17 344 5576 57 634 1267.71
#18 207 1972 0 139 1267.72
#19 96 1242 0 0 1267.72

Figure 22: Execution of box F1-2(1101101110) with all pre-computed supported points (on machineM1)
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Figure 23: Relation between max number of supported points per box and generation time (on machine
M1)
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Paving time (s) Generation time (s)
Instance No supported All supported No supported All supported

F1-2 5.9 11 5443 1315
F2-3 4.9 13.9 2961 53.1
F3-4 15.6 39.1 >250000 4012
F4-5 2.4 6 15876 1219
F5-6 26.3 61.9 78428 957

Figure 24: Time with or without computing the supported points (on machineM1)

The figures 23 show clearly that computing supported solutions is very profitable. The more we limit
the number of supported points to compute, the more the generation step will take time. The modification
of the Aneja and Nair’s algorithm makes computing all supported points not so expensive, because we skip
a lot of them which are sure to be dominated. The paving step remains also quite fast.

We compared our method with a generic epsilon constraint method [6]. The epsilon constraint we
implemented uses SCIP MIP solver. We present briefly the procedure. It takes the first objective as the
main objective and expresses the others in the form of inequality constraints (zk(x) ≤ εk), to have a mono-
objective problem. Then it solves series of problems by adjusting the εk values in order to have all possible
efficient solutions.

Instance Paving Generation All SCIP

F1-2 16.19 2117.41 2133.6 258.84
F2-3 19.9 104.15 124.05 136.8
F3-4 67.48 8140.08 8207.57 492.56
F4-5 6.75 2448.38 2455.14 465.79
F5-6 91.3 2014.74 2106.04 209.4

Figure 25: Comparison of times in seconds of our method and a SCIP epsilon constraint (on machineM2)

For these tests, we computed all the supported solutions at the paving step. We observe that the gen-
eration step is very slow compared to SCIP solver. The difficulty of handling the exponentially growing
number of labels makes our method less efficient. However, the paving step is quite fast. It gives all sup-
ported points and even more : when points are supported for the subproblem but non-supported efficient
for the global problem. Because the paving step gives already computed solutions and does not depend on
the generation step, one can use other ways to solve the subproblems than a label setting in order to get
non-supported points.

29



6. Conclusion

We have explored a method in two steps for the Single Source Capacitated Facility Location Problem
in its multi-objective version. The single objective subproblems are solved using a specialized branch and
bound lying on a continuous and a Lagrangian lower bounds and a good heuristic, which is measured faster
than the generic MIP solver SCIP. The first step of paving has been improved by introducing lower bounds
and an ordering on the boxes. Moreover, the computation of supported points using a modified Aneja and
Nair’s method, improves the whole algorithm. The generation step lies on a label setting, shown actually
inefficient comparing to an epsilon-constraint using SCIP. As we consider the paving is quite fast and gives
some flexibility, the second step is open to a lot of potential. We have also to consider that the instances
were small and the problem NP-hard, even in its single objective version. Thus, solving efficiently the Multi
Objective Single Source Capacitated Facility Location Problem is still an open question.

6.1. Further research

We think that the paving step in reasonably fast to be kept. The label setting may be improved by intro-
ducing an even tighter lower bound which is not too long to compute, but may still fail due to exponentially
growing number of labels.

An other direction to follow might be using a ranking method instead of a label setting, if possible. To
do that, we would compute all the supported solutions during the paving and find the k best solutions in
the non-dominated triangles given by the latter, in order to get the non-supported efficient solutions. This
method would be inspired by the two phase method for the multi-objective assignment problem [6].

It remains that the problem is NP-hard and we would parallelize the algorithm to make it suitable in
concrete situations. The paving step may be easily parallelizable as the generation step in which each box
can be independently processed. A common pool of non-dominated solutions would be shared between the
processes.
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7. Appendix

7.1. Branch and bound times

Instance Box k Time(BnB) Time(SCIP) Instance Box k Time(BnB) Time(SCIP)
F1-2 1101101110 0 827.651 1550.76 F2-3 1101111101 0 306.527 519.599
F1-2 1101101110 1 495.215 842.344 F2-3 1101111101 1 544.687 489.594
F1-2 1111001110 0 198.494 1067.73 F2-3 1010111011 0 45.2595 73.9428
F1-2 1111001110 1 483.605 876.032 F2-3 1010111011 1 5.6127 39.9912
F1-2 1101011110 0 737.83 1157.62 F2-3 1111101101 0 20.5214 137.146
F1-2 1101011110 1 208.274 614.771 F2-3 1111101101 1 241.468 499.076
F1-2 0101111110 0 400.247 802.074 F2-3 1101111011 0 27.0583 97.277
F1-2 0101111110 1 201.798 263.554 F2-3 1101111011 1 61.161 191.116
F1-2 0111101110 0 278.437 291.362 F2-3 1111101011 0 25.2199 78.0853
F1-2 0111101110 1 370.571 586.158 F2-3 1111101011 1 30.0138 110.195
F1-2 0111011110 0 117.127 281.131 F2-3 0010111111 0 646.534 979.315
F1-2 0111011110 1 304.131 438.493 F2-3 0010111111 1 284.329 680.805
F1-2 1100111110 0 11.8373 38.945 F2-3 1101011111 0 141.929 111.167
F1-2 1100111110 1 18.9666 58.6369 F2-3 1101011111 1 45.176 101.49
F1-2 1110101110 0 12.0836 42.2645 F2-3 1111011001 0 7.855 91.1436
F1-2 1110101110 1 114.372 152.587 F2-3 1111011001 1 16.2338 34.8707
F1-2 1101110110 0 130.886 221.056 F2-3 1111001111 0 44.0789 117.98
F1-2 1101110110 1 88.0681 167.483 F2-3 1111001111 1 19.1396 206.19
F1-2 1111100110 0 196.282 519.283 F3-4 0111101101 0 1480.98 7299.97
F1-2 1111100110 1 347.565 250.208 F3-4 0111101101 1 615.74 2420.96
F1-2 1101111100 0 32.2031 68.9573 F3-4 0111111001 0 229.859 1110.78
F1-2 1101111100 1 223.065 423.997 F3-4 0111111001 1 223.53 1213.17
F1-2 1101101111 0 45.4079 106.225 F3-4 1001111101 0 608.067 3069.2
F1-2 1101101111 1 191.369 86.9984 F3-4 1001111101 1 418.215 823.918
F1-2 1100111011 0 229.38 377.279 F3-4 0111101011 0 284.081 1145.12
F1-2 1100111011 1 27.165 160.167 F3-4 0111101011 1 326.771 2022.27
F1-2 1111101100 0 54.5262 97.9359 F3-4 1011101101 0 339.981 655.279
F1-2 1111101100 1 216.495 184.567 F3-4 1011101101 1 130.847 201.621
F1-2 1101111010 0 72.0695 156.194 F3-4 1011111001 0 616.108 1286.32
F1-2 1101111010 1 37.9114 110.784 F3-4 1011111001 1 121.129 442.206
F1-2 1001111110 0 15.6152 59.1295 F3-4 1011101011 0 23.5481 219.659
F1-2 1001111110 1 22.7073 198.543 F3-4 1011101011 1 60.5606 150.702
F1-2 0111101111 0 66.1123 120.196 F3-4 1111110001 0 1020.01 2151.07
F1-2 0111101111 1 72.4167 118.93 F3-4 1111110001 1 110.879 775.464
F2-3 1001011111 0 312.854 681.48 F3-4 1010111110 0 570.307 3281.22
F2-3 1001011111 1 373.17 956.257 F3-4 1010111110 1 145.688 1231.74
F2-3 1011011001 0 54.0359 322.637 F3-4 0010110111 0 332.699 1214.25
F2-3 1011011001 1 76.1333 579.63 F3-4 0010110111 1 157.349 1112.44
F2-3 1110011101 0 313.181 2319.22 F3-4 1111100011 0 173.825 409.757
F2-3 1110011101 1 229.462 922.793 F3-4 1111100011 1 88.6196 889.1
F2-3 0101111111 0 772.135 908.325 F3-4 1010011111 0 650.897 1412.65
F2-3 0101111111 1 204.093 1425.28 F3-4 1010011111 1 565.104 854.042
F2-3 1010111101 0 73.1691 249.815 F3-4 1001111011 0 497.144 1218.5
F2-3 1010111101 1 244.347 663.843 F3-4 1001111011 1 466.19 1944.05
F2-3 1011001111 0 26.3834 202.145 F3-4 1111100101 0 255.29 1455.83
F2-3 1011001111 1 21.5903 115.97 F3-4 1111100101 1 209.597 971.372
F2-3 1110011011 0 255.404 446.678 F3-4 1011111100 0 440.761 763.798
F2-3 1110011011 1 30.7282 339.992 F3-4 1011111100 1 73.6237 145.674

Figure 26: Times in milliseconds of our branch and bound algorithm and SCIP solver
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Instance Box k Time(BnB) Time(SCIP) Instance Box k Time(BnB) Time(SCIP)
F3-4 0011110101 0 40.67 62.999 F4-5 1011011101 0 37.2595 121.203
F3-4 0011110101 1 9.507 51.7963 F4-5 1011011101 1 1.3736 25.8088
F3-4 0011100111 0 8.8203 68.0207 F4-5 1101111001 0 206.159 752.266
F3-4 0011100111 1 9.4989 29.0101 F4-5 1101111001 1 55.3524 364.024
F3-4 0111111100 0 930.469 1579.2 F4-5 1001100111 0 21.4518 200.159
F3-4 0111111100 1 84.5502 526.784 F4-5 1001100111 1 0.6997 37.8111
F3-4 0111101110 0 266.747 567.111 F4-5 0011011111 0 41.1626 574.118
F3-4 0111101110 1 41.4343 256.428 F4-5 0011011111 1 359.06 1851.45
F3-4 0111011101 0 2089.8 1948.35 F4-5 1000111011 0 10.9044 40.6555
F3-4 0111011101 1 276.67 1333.46 F4-5 1000111011 1 4.2758 54.7396
F3-4 1011011101 0 701.089 667.356 F4-5 1010111001 0 86.1267 238.26
F3-4 1011011101 1 117.035 210.774 F4-5 1010111001 1 0.3209 22.8254
F3-4 0001110111 0 65.9624 225.273 F4-5 0010111011 0 40.0976 223.074
F3-4 0001110111 1 38.9942 102.493 F4-5 0010111011 1 31.4579 265.128
F3-4 0011110011 0 30.2832 292.866 F4-5 1100001111 0 29.7371 89.6646
F3-4 0011110011 1 3.6318 22.2301 F4-5 1100001111 1 9.0534 63.9979
F3-4 1110111101 0 15.5885 61.0407 F4-5 1001101011 0 0.8694 24.286
F3-4 1110111101 1 63.0712 111.165 F4-5 1001101011 1 3.2322 89.9094
F3-4 1001101111 0 321.931 1574.5 F4-5 1010111010 0 76.1137 683.328
F3-4 1001101111 1 585.857 1700.71 F4-5 1010111010 1 23.7082 364.813
F3-4 0111111010 0 643.182 1518 F4-5 1011010011 0 22.4176 62.094
F3-4 0111111010 1 24.7471 158.366 F4-5 1011010011 1 7.7291 27.4751
F3-4 1110111011 0 63.9719 205.072 F4-5 1011101001 0 2.83 56.5709
F3-4 1110111011 1 77.0474 233.811 F4-5 1011101001 1 0.368 23.14
F3-4 0011110110 0 6.4858 33.982 F4-5 1000101111 0 2.5076 21.6622
F3-4 0011110110 1 2.205 20.6125 F4-5 1000101111 1 5.12 33.5343
F3-4 0011111101 0 20.5025 42.6801 F4-5 1100111101 0 233.742 321.597
F3-4 0011111101 1 4.3234 49.0111 F4-5 1100111101 1 8.6718 48.653
F4-5 1001110011 0 21.9673 853.003 F5-6 1101110110 0 3733.12 3566.62
F4-5 1001110011 1 60.1301 479.706 F5-6 1101110110 1 898.298 5567.55
F4-5 1011110001 0 48.5135 545.368 F5-6 1100011111 0 313.815 1171.79
F4-5 1011110001 1 54.8205 292.785 F5-6 1100011111 1 555.47 1610.68
F4-5 1001111101 0 123.972 690.312 F5-6 1101111010 0 171.62 410.192
F4-5 1001111101 1 251.823 1083.96 F5-6 1101111010 1 489.257 1140.79
F4-5 1010000111 0 45.8349 451.795 F5-6 1111001100 0 20.1856 76.2312
F4-5 1010000111 1 81.3157 434.673 F5-6 1111001100 1 229.394 470.195
F4-5 1101001011 0 79.7759 573.567 F5-6 1001111110 0 441.454 1919.04
F4-5 1101001011 1 109.148 627.108 F5-6 1001111110 1 398.1 1503.86
F4-5 1111001001 0 176.489 714.108 F5-6 1110001110 0 36.9987 146.901
F4-5 1111001001 1 71.2888 737.835 F5-6 1110001110 1 222.681 369.71
F4-5 1000110111 0 21.1502 188.046 F5-6 1101011110 0 55.1873 191.439
F4-5 1000110111 1 0.9316 30.1068 F5-6 1101011110 1 116.86 121.465
F4-5 1010110101 0 25.021 174.34 F5-6 1110010111 0 135.753 901.926
F4-5 1010110101 1 17.9172 276.118 F5-6 1110010111 1 376.894 431.731
F4-5 1010001011 0 10.7779 49.4133 F5-6 1101011101 0 1119.77 4512.48
F4-5 1010001011 1 4.5512 52.01 F5-6 1101011101 1 252.399 516.498
F4-5 1001011111 0 25.027 96.8295 F5-6 1111110010 0 257.265 1685.96
F4-5 1001011111 1 17.7133 113.753 F5-6 1111110010 1 428.138 1174.85

Figure 27: Times in milliseconds of our branch and bound algorithm and SCIP solver
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Instance Box k Time(BnB) Time(SCIP) Instance Box k Time(BnB) Time(SCIP)
F5-6 1110101100 0 23.6579 162.548 F5-6 1111011100 0 1.4351 30.3608
F5-6 1110101100 1 198.803 338.781 F5-6 1111011100 1 35.4993 102.833
F5-6 1101001111 0 133.161 264.611 F5-6 1010111101 0 473.489 4992.65
F5-6 1101001111 1 155.144 157.119 F5-6 1010111101 1 70.3685 1543.37
F5-6 1111010110 0 27.0729 107.512 F5-6 1001111111 0 16.2212 61.0499
F5-6 1111010110 1 171.219 230.712 F5-6 1001111111 1 93.9752 71.6479
F5-6 1110110110 0 33.4094 338.96 F5-6 1110011110 0 14.1888 35.3267
F5-6 1110110110 1 264.549 183.836 F5-6 1110011110 1 49.6034 58.2228
F5-6 1100111110 0 40.1625 146.981 F5-6 1100111111 0 8.2176 38.5708
F5-6 1100111110 1 413.701 242.08 F5-6 1100111111 1 15.6712 49.4291
F5-6 1111011010 0 4.0222 37.7128 F5-6 1111011001 0 49.6461 157.911
F5-6 1111011010 1 134.663 120.692 F5-6 1111011001 1 509.193 1509.58
F5-6 1110011011 0 42.4231 183.888 F5-6 1010101111 0 265.623 199.044
F5-6 1110011011 1 1638 2294.43 F5-6 1010101111 1 146.092 187.094
F5-6 1111110100 0 64.0541 429.513 F5-6 1111100110 0 2.0748 38.6249
F5-6 1111110100 1 165.452 236.395 F5-6 1111100110 1 197.588 84.9502
F5-6 1101101011 0 1119.76 4678.64 F5-6 1101101110 0 23.7791 66.4797
F5-6 1101101011 1 125.72 936.834 F5-6 1101101110 1 15.8959 48.7659
F5-6 1101111100 0 24.4145 107.786 F5-6 0111111011 0 3618.5 8623.42
F5-6 1101111100 1 36.6507 59.1671 F5-6 0111111011 1 1223.62 4838.82
F5-6 1100111101 0 687.264 2043.13 F5-6 1110100111 0 65.8393 339.151
F5-6 1100111101 1 194.153 1154 F5-6 1110100111 1 503.892 1355.81
F5-6 1111000111 0 72.3725 190.105 F5-6 1111001011 0 84.9318 313.029
F5-6 1111000111 1 143.023 245.562 F5-6 1111001011 1 97.1082 78.092
F5-6 1010011111 0 82.6332 1013.49 F5-6 1111111000 0 23.6073 51.0823
F5-6 1010011111 1 271.996 1532.28 F5-6 1111111000 1 133.876 229.599
F5-6 1011111010 0 70.8915 732.411 F5-6 1101011111 0 25.6706 63.1066
F5-6 1011111010 1 341.194 799.3 F5-6 1101011111 1 32.0541 66.6499
F5-6 1100101111 0 71.3696 346.067 F5-6 1101101101 0 126.931 613.646
F5-6 1100101111 1 242.12 274.116 F5-6 1101101101 1 72.0836 148.863
F5-6 1110111010 0 28.0528 224.726 F5-6 1111101010 0 13.5015 49.7086
F5-6 1110111010 1 112.092 80.9518 F5-6 1111101010 1 90.1027 62.6063
F5-6 1011110110 0 474.624 1628.49 F5-6 0110111111 0 131.753 310.19
F5-6 1011110110 1 1430.7 9651.13 F5-6 0110111111 1 259.604 194.559
F5-6 1011011110 0 23.2393 264.856 F5-6 1110111100 0 15.6348 45.5799
F5-6 1011011110 1 71.6383 120.49 F5-6 1110111100 1 29.3389 74.563
F5-6 1110111001 0 331.583 1851.7 F5-6 1110101110 0 11.6174 32.513
F5-6 1110111001 1 322.057 1943.77 F5-6 1110101110 1 10.9836 51.5002
F5-6 1010111110 0 142.565 338.037
F5-6 1010111110 1 403.511 540.008
F5-6 1110101011 0 58.8941 313.354
F5-6 1110101011 1 64.5436 49.5619
F5-6 1011101011 0 335.599 2154.21
F5-6 1011101011 1 101.114 731.965
F5-6 1101110111 0 137.594 403.264
F5-6 1101110111 1 72.611 60.1827
F5-6 1101111011 0 74.5019 106.515
F5-6 1101111011 1 106.468 108.357

Figure 28: Times in milliseconds of our branch and bound algorithm and SCIP solver
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7.2. Branch and bound nodes

Instance Box k Nodes(BnB) Nodes(SCIP) Instance Box k Nodes(BnB) Nodes(SCIP)
F1-2 1101101110 0 4957 8559 F2-3 1101111101 0 1683 1946
F1-2 1101101110 1 3919 3356 F2-3 1101111101 1 3421 1832
F1-2 1111001110 0 1643 5455 F2-3 1010111011 0 313 173
F1-2 1111001110 1 4437 4184 F2-3 1010111011 1 35 117
F1-2 1101011110 0 5645 5533 F2-3 1111101101 0 103 355
F1-2 1101011110 1 1709 2275 F2-3 1111101101 1 1581 1451
F1-2 0101111110 0 2967 5383 F2-3 1101111011 0 143 318
F1-2 0101111110 1 1187 436 F2-3 1101111011 1 377 343
F1-2 0111101110 0 2393 512 F2-3 1111101011 0 107 246
F1-2 0111101110 1 3811 1149 F2-3 1111101011 1 239 235
F1-2 0111011110 0 1007 599 F2-3 0010111111 0 3405 7019
F1-2 0111011110 1 3297 681 F2-3 0010111111 1 2143 3386
F1-2 1100111110 0 83 133 F2-3 1101011111 0 851 242
F1-2 1100111110 1 171 166 F2-3 1101011111 1 259 181
F1-2 1110101110 0 79 156 F2-3 1111011001 0 55 155
F1-2 1110101110 1 1145 269 F2-3 1111011001 1 137 86
F1-2 1101110110 0 825 379 F2-3 1111001111 0 339 262
F1-2 1101110110 1 663 334 F2-3 1111001111 1 201 330
F1-2 1111100110 0 1719 2746 F3-4 0111101101 0 10605 114360
F1-2 1111100110 1 3803 437 F3-4 0111101101 1 4493 32717
F1-2 1101111100 0 255 264 F3-4 0111111001 0 1179 7164
F1-2 1101111100 1 2135 961 F3-4 0111111001 1 1811 11565
F1-2 1101101111 0 423 217 F3-4 1001111101 0 3761 46936
F1-2 1101101111 1 1443 188 F3-4 1001111101 1 3945 4440
F1-2 1100111011 0 1751 711 F3-4 0111101011 0 2247 11509
F1-2 1100111011 1 207 352 F3-4 0111101011 1 2877 30406
F1-2 1111101100 0 391 280 F3-4 1011101101 0 2851 3241
F1-2 1111101100 1 1621 357 F3-4 1011101101 1 1113 292
F1-2 1101111010 0 393 351 F3-4 1011111001 0 4593 10827
F1-2 1101111010 1 333 252 F3-4 1011111001 1 1153 1275
F1-2 1001111110 0 81 151 F3-4 1011101011 0 213 333
F1-2 1001111110 1 281 360 F3-4 1011101011 1 571 305
F1-2 0111101111 0 497 143 F3-4 1111110001 0 5943 20767
F1-2 0111101111 1 641 209 F3-4 1111110001 1 1083 3884
F2-3 1001011111 0 1811 1629 F3-4 1010111110 0 3193 50544
F2-3 1001011111 1 2157 5266 F3-4 1010111110 1 933 9130
F2-3 1011011001 0 455 828 F3-4 0010110111 0 3525 11270
F2-3 1011011001 1 745 2958 F3-4 0010110111 1 2201 12224
F2-3 1110011101 0 1203 32822 F3-4 1111100011 0 1513 665
F2-3 1110011101 1 1867 5784 F3-4 1111100011 1 647 6549
F2-3 0101111111 0 4497 4510 F3-4 1010011111 0 3357 13293
F2-3 0101111111 1 1439 11695 F3-4 1010011111 1 4605 2549
F2-3 1010111101 0 447 478 F3-4 1001111011 0 2529 7524
F2-3 1010111101 1 1385 2998 F3-4 1001111011 1 5193 22683
F2-3 1011001111 0 137 471 F3-4 1111100101 0 1917 17761
F2-3 1011001111 1 131 289 F3-4 1111100101 1 1405 6624
F2-3 1110011011 0 1281 1069 F3-4 1011111100 0 3371 3726
F2-3 1110011011 1 365 398 F3-4 1011111100 1 713 224

Figure 29: Number of nodes of our branch and bound algorithm and SCIP solver
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Instance Box k Nodes(BnB) Nodes(SCIP) Instance Box k Nodes(BnB) Nodes(SCIP)
F3-4 0011110101 0 297 131 F4-5 1011011101 0 321 226
F3-4 0011110101 1 73 139 F4-5 1011011101 1 11 66
F3-4 0011100111 0 61 118 F4-5 1101111001 0 2063 3548
F3-4 0011100111 1 93 89 F4-5 1101111001 1 509 834
F3-4 0111111100 0 7145 14072 F4-5 1001100111 0 177 346
F3-4 0111111100 1 531 1443 F4-5 1001100111 1 5 91
F3-4 0111101110 0 2623 2029 F4-5 0011011111 0 221 1643
F3-4 0111101110 1 295 455 F4-5 0011011111 1 2525 23266
F3-4 0111011101 0 16375 22042 F4-5 1000111011 0 105 84
F3-4 0111011101 1 2503 9471 F4-5 1000111011 1 39 127
F3-4 1011011101 0 5859 3442 F4-5 1010111001 0 1019 455
F3-4 1011011101 1 1277 314 F4-5 1010111001 1 3 37
F3-4 0001110111 0 815 407 F4-5 0010111011 0 377 499
F3-4 0001110111 1 511 243 F4-5 0010111011 1 167 443
F3-4 0011110011 0 401 641 F4-5 1100001111 0 213 212
F3-4 0011110011 1 39 130 F4-5 1100001111 1 39 198
F3-4 1110111101 0 107 196 F4-5 1001101011 0 9 89
F3-4 1110111101 1 537 233 F4-5 1001101011 1 31 122
F3-4 1001101111 0 1933 11148 F4-5 1010111010 0 813 5344
F3-4 1001101111 1 6383 17337 F4-5 1010111010 1 177 531
F3-4 0111111010 0 3867 9834 F4-5 1011010011 0 133 192
F3-4 0111111010 1 179 267 F4-5 1011010011 1 43 74
F3-4 1110111011 0 351 372 F4-5 1011101001 0 31 118
F3-4 1110111011 1 655 386 F4-5 1011101001 1 3 31
F3-4 0011110110 0 49 143 F4-5 1000101111 0 23 29
F3-4 0011110110 1 29 32 F4-5 1000101111 1 65 53
F3-4 0011111101 0 283 71 F4-5 1100111101 0 2469 626
F3-4 0011111101 1 47 101 F4-5 1100111101 1 47 125
F4-5 1001110011 0 175 5712 F5-6 1101110110 0 20349 53539
F4-5 1001110011 1 313 1449 F5-6 1101110110 1 4499 91931
F4-5 1011110001 0 337 1589 F5-6 1100011111 0 1841 10644
F4-5 1011110001 1 399 577 F5-6 1100011111 1 4047 16645
F4-5 1001111101 0 965 2196 F5-6 1101111010 0 1579 1059
F4-5 1001111101 1 1801 8405 F5-6 1101111010 1 3599 8462
F4-5 1010000111 0 381 2393 F5-6 1111001100 0 173 166
F4-5 1010000111 1 665 1616 F5-6 1111001100 1 2973 1520
F4-5 1101001011 0 595 2767 F5-6 1001111110 0 3323 23015
F4-5 1101001011 1 539 3071 F5-6 1001111110 1 2283 9637
F4-5 1111001001 0 1235 3160 F5-6 1110001110 0 293 264
F4-5 1111001001 1 549 5329 F5-6 1110001110 1 2287 834
F4-5 1000110111 0 183 336 F5-6 1101011110 0 435 358
F4-5 1000110111 1 7 108 F5-6 1101011110 1 1407 278
F4-5 1010110101 0 193 380 F5-6 1110010111 0 587 5096
F4-5 1010110101 1 139 598 F5-6 1110010111 1 2189 892
F4-5 1010001011 0 53 132 F5-6 1101011101 0 6109 72627
F4-5 1010001011 1 43 118 F5-6 1101011101 1 1387 1434
F4-5 1001011111 0 139 238 F5-6 1111110010 0 1469 23440
F4-5 1001011111 1 189 235 F5-6 1111110010 1 2015 7923

Figure 30: Number of nodes of our branch and bound algorithm and SCIP solver
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Instance Box k Nodes(BnB) Nodes(SCIP) Instance Box k Nodes(BnB) Nodes(SCIP)
F5-6 1110101100 0 165 299 F5-6 1111011100 0 15 84
F5-6 1110101100 1 1731 667 F5-6 1111011100 1 373 180
F5-6 1101001111 0 1155 463 F5-6 1010111101 0 2043 71649
F5-6 1101001111 1 1421 260 F5-6 1010111101 1 365 15961
F5-6 1111010110 0 179 292 F5-6 1001111111 0 139 187
F5-6 1111010110 1 1561 423 F5-6 1001111111 1 727 153
F5-6 1110110110 0 409 624 F5-6 1110011110 0 77 91
F5-6 1110110110 1 2143 322 F5-6 1110011110 1 711 121
F5-6 1100111110 0 339 192 F5-6 1100111111 0 67 107
F5-6 1100111110 1 3909 407 F5-6 1100111111 1 161 151
F5-6 1111011010 0 45 100 F5-6 1111011001 0 227 363
F5-6 1111011010 1 1553 217 F5-6 1111011001 1 3769 18534
F5-6 1110011011 0 241 316 F5-6 1010101111 0 1885 283
F5-6 1110011011 1 10701 24978 F5-6 1010101111 1 1501 372
F5-6 1111110100 0 719 1385 F5-6 1111100110 0 27 104
F5-6 1111110100 1 1383 393 F5-6 1111100110 1 1375 152
F5-6 1101101011 0 5737 66153 F5-6 1101101110 0 283 100
F5-6 1101101011 1 635 3309 F5-6 1101101110 1 147 112
F5-6 1101111100 0 219 204 F5-6 0111111011 0 14649 106084
F5-6 1101111100 1 347 140 F5-6 0111111011 1 5161 71768
F5-6 1100111101 0 3797 24238 F5-6 1110100111 0 571 566
F5-6 1100111101 1 1049 5368 F5-6 1110100111 1 4571 8832
F5-6 1111000111 0 495 370 F5-6 1111001011 0 695 541
F5-6 1111000111 1 1477 490 F5-6 1111001011 1 1081 181
F5-6 1010011111 0 439 5957 F5-6 1111111000 0 227 121
F5-6 1010011111 1 2069 17442 F5-6 1111111000 1 1017 389
F5-6 1011111010 0 581 3702 F5-6 1101011111 0 221 114
F5-6 1011111010 1 2393 2163 F5-6 1101011111 1 343 179
F5-6 1100101111 0 537 404 F5-6 1101101101 0 1163 1606
F5-6 1100101111 1 2265 479 F5-6 1101101101 1 807 268
F5-6 1110111010 0 321 452 F5-6 1111101010 0 115 118
F5-6 1110111010 1 871 203 F5-6 1111101010 1 859 144
F5-6 1011110110 0 2077 9791 F5-6 0110111111 0 899 653
F5-6 1011110110 1 7547 138222 F5-6 0110111111 1 1677 339
F5-6 1011011110 0 303 659 F5-6 1110111100 0 95 100
F5-6 1011011110 1 663 191 F5-6 1110111100 1 229 109
F5-6 1110111001 0 1903 24417 F5-6 1110101110 0 113 70
F5-6 1110111001 1 2035 21350 F5-6 1110101110 1 93 100
F5-6 1010111110 0 1511 566
F5-6 1010111110 1 3473 2178
F5-6 1110101011 0 525 740
F5-6 1110101011 1 405 142
F5-6 1011101011 0 1883 29803
F5-6 1011101011 1 545 1109
F5-6 1101110111 0 1309 1062
F5-6 1101110111 1 573 191
F5-6 1101111011 0 755 168
F5-6 1101111011 1 1133 276

Figure 31: Number of nodes of our branch and bound algorithm and SCIP solver
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7.3. Relation between max number of supported points per box and paving and generation times

Instance Paving time (s) Generation time (s)
maxpoints: 0 1 3 Infinity 0 1 3 Infinity

F1-2 5.9 7.1 7 11 5443 2768 1613 1315
F2-3 4.9 6.6 8.5 13.9 2961 134 69.6 53.1
F3-4 15.6 16.6 22.3 39.1 >250000 181787 55332 4012
F4-5 2.4 2.4 3.3 6 15876 3685 2508 1219
F5-6 26.3 24.6 32.4 61.9 78428 1286 1152 957

Figure 32: Relation between max number of supported points per box and paving and generation times

7.4. Efficient solutions graphs
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Figure 33: Efficient solutions for F1-2
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Figure 34: Efficient solutions for F2-3
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Figure 35: Efficient solutions for F3-4
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Figure 36: Efficient solutions for F4-5
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Figure 37: Efficient solutions for F5-6
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